SANTA CRUZ BIOTECHNOLOGY, INC.

c-Myc siRNA (m2): sc-44249

BACKGROUND

c-Myc-, N-Myc- and L-Myc-encoded proteins function in cell proliferation, differentiation and neoplastic disease. They are located in the nucleus and have relatively short half lives. Amplification of the c-Myc gene has been found in several types of human tumors including lung, breast and colon carcinomas. The presence of a leucine zipper, the helix-loop-helix and a basic region in the c-Myc COOH terminus provided initial evidence for a sequence-specific binding function. A basic region helix-loop-helix leucine zipper motif protein, called Max, specifically associates with c-Myc, N-Myc and L-Myc. The Myc-Max complex binds to DNA in a sequence-specific manner. Max can also form heterodimers with at least two additional bHLH-Zip proteins, Mad and Mxi1, and Mad-Max dimers have been shown to repress transcription through interaction with mSin3.

REFERENCES

- Alitalo, K., et al. 1983. Homogeneously staining chromosomal regions contain amplified copies of an abundantly expressed cellular oncogene (c-Myc) in malignant neuroendocrine cells from a human colon carcinoma. Proc. Natl. Acad. Sci. USA 80: 1707-1711.
- 2. Nau, M.N., et al. 1985. L-Myc, a new Myc-related gene amplified and expressed in human small cell lung cancer. Nature 318: 69-73.
- Nisen, P.D., et al. 1986. Enhanced expression of the N-Myc gene in Wilms' tumors. Cancer Res. 46: 6217-6222.
- Blackwood, E.M. and Eisenman, R.N. 1991. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251: 1211-1217.
- Mukherjee, B., et al. 1992. Myc family oncoproteins function through a common pathway to transform normal cells in culture: cross-reference by Max and *trans*-acting dominant mutants. Genes Dev. 6: 1480-1492.
- Amati, B., et al. 1992. Transcriptional activation by the human c-Myc oncoprotein in yeast requires interaction with Max. Nature 359: 423-426.
- Ayer, D.E., et al. 1995. Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80: 767-776.

CHROMOSOMAL LOCATION

Genetic locus: Myc (mouse) mapping to 15 D1.

PRODUCT

c-Myc siRNA (m2) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see c-Myc shRNA Plasmid (m2): sc-44249-SH and c-Myc shRNA (m2) Lentiviral Particles: sc-44249-V as alternate gene silencing products.

For independent verification of c-Myc (m2) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-44249A, sc-44249B and sc-44249C.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

c-Myc siRNA (m2) is recommended for the inhibition of c-Myc expression in mouse cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 μ M in 66 μ l. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

GENE EXPRESSION MONITORING

c-Myc (9E10): sc-40 is recommended as a control antibody for monitoring of c-Myc gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500).

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-IgGκ BP-HRP: sc-516102 or m-IgGκ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz Marker™ Molecular Weight Standards: sc-2035, UltraCruz® Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-IgGκ BP-FITC: sc-516140 or m-IgGκ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz® Mounting Medium: sc-24941 or UltraCruz® Hard-set Mounting Medium: sc-359850.

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor c-Myc gene expression knockdown using RT-PCR Primer: c-Myc (m2)-PR: sc-44249-PR (20 μ l, 593 bp). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.