Flt-3/Flk-2 (C-20): sc-479

The Power to Question

BACKGROUND

Stem cell tyrosine kinase (STK-1) has been cloned from a CD34+ hematopoietic stem cell enriched library and identified as the human homolog of a previously identified gene of mouse origin designated either Flk-2 or Flt-3. The STK-1 cDNA encodes a protein of 993 amino acids with 85% identity to Flt-3/Flk-2. STK-1 is a member of the type III receptor tyrosine kinase family that includes Kit (steel factor receptor), Fms and PDGF. STK-1 expression in blood and marrow is restricted to CD34+ cells, a population greatly enriched for hematopoietic stem/progenitor cells. STK-1 antiserum recognizes 2 polypeptides in these cells. The mouse homolog of STK-1, designated Flt-3/Flk-2, is expressed at high levels in hematopoietic cells and also in neural, gonadal, hepatic and placental tissues. It has been suggested that STK-1 and its murine homolog Flt-3/Flk-2 may function as growth factor receptors on hematopoietic stem and/or progenitor cells.

CHROMOSOMAL LOCATION

Genetic locus: FLT3 (human) mapping to 13q12.2.

SOURCE

Flt-3/Flk-2 (C-20) is an affinity purified rabbit polyclonal antibody raised against a peptide mapping at the C-terminus of Flt-3/Flk-2 of human origin.

PRODUCT

Each vial contains 100 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-479 P, ($100 \mu g$ peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

APPLICATIONS

Flt-3/Flk-2 (C-20) is recommended for detection of Flt-3/Flk-2 p160 and p130 of human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500), immunohistochemistry (including paraffin-embedded sections) (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

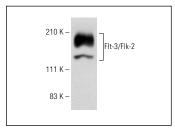
Suitable for use as control antibody for Flt-3/Flk-2 siRNA (h): sc-29320, Flt-3/Flk-2 shRNA Plasmid (h): sc-29320-SH and Flt-3/Flk-2 shRNA (h) Lentiviral Particles: sc-29320-V.

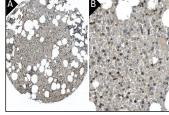
Molecular Weight of Flt-3/Flk-2 polypeptides: 160/130 kDa.

Positive Controls: THP-1 cell lysate: sc-2238.

RESEARCH USE

For research use only, not for use in diagnostic procedures.


PROTOCOLS


See our web site at www.scbt.com or our catalog for detailed protocols and support products.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

DATA

Flt-3/Flk-2 (C-20): sc-479. Western blot analysis of Flt-3/Flk-2 expression in THP-1 whole cell lysate.

Fit-3/Fik-2 (C-20): sc-479. Immunoperoxidase staining of formalin fixed, paraffin-embedded human bone marrow tissue showing cytoplasmic staining of bone marrow poietic cells at low (**A**) and high (**B**) magnification. Kindly provided by The Swedish Human Protein Atlas (HPA) program.

SELECT PRODUCT CITATIONS

- Bertho, J.M., et al. 2000. CD135 (Flk-2/Flt-3) expression by human thymocytes delineates a possible role of Flt-3-ligand in T cell precursor proliferation and differentiation. Scand. J. Immunol. 52: 53-61.
- 2. Jiang, J. and Griffin, J.D. 2010. Wnt/ β -catenin pathway modulates the sensitivity of the mutant FLT3 receptor kinase inhibitors in a GSK-3 β dependent manner. Genes Cancer 1: 164-176.
- Guerrouahen, B.S., et al. 2010. Dasatinib inhibits the growth of molecularly heterogeneous myeloid leukemias. Clin. Cancer Res. 16: 1149-1158.
- 4. Arora, D., et al. 2011. Protein-tyrosine phosphatase DEP-1 controls receptor tyrosine kinase FLT3 signaling. J. Biol. Chem. 286: 10918-10929.
- Godfrey, R., et al. 2012. Cell transformation by FLT3 ITD in acute myeloid leukemia involves oxidative inactivation of the tumor suppressor proteintyrosine phosphatase DEP-1/ PTPRJ. Blood 119: 4499-4511.
- Moore, A.S., et al. 2012. Selective FLT3 inhibition of FLT3-ITD+ acute myeloid leukaemia resulting in secondary D835Y mutation: a model for emerging clinical resistance patterns. Leukemia 26: 1462-1470.
- 7. Köthe, S., et al. 2013. Features of Ras activation by a mislocalized oncogenic tyrosine kinase: FLT3 ITD signals via K-Ras at the plasma membrane of acute myeloid leukemia cells. J. Cell Sci. 126: 4746-4755.
- Mashkani, B., et al. 2014. Differences in growth promotion, drug response and intracellular protein trafficking of FLT3 mutants. Iran. J. Basic Med. Sci. 17: 867-873.

Try Flt-3/Flk-2 (SF1.340): sc-19635 or Flt-3/Flk-2 (BV10): sc-21788, our highly recommended monoclonal alternatives to Flt-3/Flk-2 (C-20). Also, for AC, HRP, FITC, PE, Alexa Fluor[®] 488 and Alexa Fluor[®] 647 conjugates, see Flt-3/Flk-2 (SF1.340): sc-19635.