Flt-3/Flk-2 (S-18): sc-480

The Power to Overtio

BACKGROUND

Stem cell tyrosine kinase (STK-1) has been cloned from a CD34+ hematopoietic stem cell enriched library and identified as the human homolog of a previously identified gene of mouse origin designated either Flk-2 or Flt-3. The STK-1 cDNA encodes a protein of 993 amino acids with 85% identity to Flt-3/Flk-2. STK-1 is a member of the type III receptor tyrosine kinase family that includes Kit (steel factor receptor), Fms and PDGF. STK-1 expression in blood and marrow is restricted to CD34+ cells, a population greatly enriched for hematopoietic stem/progenitor cells. STK-1 antiserum recognizes two polypeptides in these cells. The mouse homolog of STK-1, designated Flt-3/Flk-2, is expressed at high levels in hematopoietic cells and also in neural, gonadal, hepatic and placental tissues. It has been suggested that STK-1 and its murine homolog Flt-3/Flk-2 may function as growth factor receptors on hematopoietic stem and/or progenitor cells.

CHROMOSOMAL LOCATION

Genetic locus: FLT3 (human) mapping to 13q12.2.

SOURCE

Flt-3/Flk-2 (S-18) is an affinity purified rabbit polyclonal antibody raised against a peptide mapping within the kinase insert region of Flt-3/Flk-2 of human origin.

PRODUCT

Each vial contains 100 μg lgG in 1.0 ml of PBS with <0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-480 P, (100 µg peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

APPLICATIONS

Flt-3/Flk-2 (S-18) is recommended for detection of Flt-3/Flk-2 p160 and p130 of human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 μ g per 100-500 μ g of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

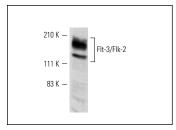
Suitable for use as control antibody for Flt-3/Flk-2 siRNA (h): sc-29320, Flt-3/Flk-2 shRNA Plasmid (h): sc-29320-SH and Flt-3/Flk-2 shRNA (h) Lentiviral Particles: sc-29320-V.

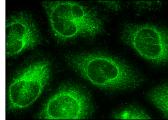
Molecular Weight of Flt-3/Flk-2 polypeptides: 160/130 kDa.

Positive Controls: THP-1 cell lysate: sc-2238 or K-562 nuclear extract: sc-2130.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.


PROTOCOLS


See our web site at www.scbt.com or our catalog for detailed protocols and support products.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

DATA

Flt-3/Flk-2 (S-18): sc-480. Western blot analysis of Flt-3/Flk-2 expression in THP-1 whole cell lysate.

Flt-3/Flk-2 (S-18): sc-480. Immunofluorescence staining of methanol-fixed HeLa cells showing cytoplasmic localization.

SELECT PRODUCT CITATIONS

- Tse, K.F., et al. 2000. Constitutive activation of Flt-3 stimulates multiple intracellular signal transducers and results in transformation. Leukemia 14: 1766-1776.
- Chen, I.H., et al. 2008. Lupane-type triterpenoids from *Microtropis fokienensis* and *Perrottetia arisanensis* and the apoptotic effect of 28-hydroxy-3-oxo-lup-20(29)-en-30-al. J. Nat. Prod. 71: 1352-1357.
- 3. Vu, H.A., et al. 2009. The juxtamembrane domain in ETV6/FLT3 is critical for PIM-1 up-regulation and cell proliferation. Biochem. Biophys. Res. Commun. 383: 308-313.
- 4. Pratz, K.W., et al. 2010. FLT3-mutant allelic burden and clinical status are predictive of response to FLT3 inhibitors in AML. Blood 115: 1425-1432.
- Buchwald, M., et al. 2010. Ubiquitin conjugase UBCH8 targets active FMS-like tyrosine kinase 3 for proteasomal degradation. Leukemia 24: 1412-1421.
- Arora, D., et al. 2011. Protein-tyrosine phosphatase DEP-1 controls receptor tyrosine kinase FLT3 signaling. J. Biol. Chem. 286: 10918-10929.
- 7. Pietschmann, K., et al. 2012. Breakdown of the FLT3-ITD/STAT5 axis and synergistic apoptosis induction by the histone deacetylase inhibitor panobinostat and FLT3-specific inhibitors. Mol. Cancer Ther. 11: 2373-2383.
- Godfrey, R., et al. 2012. Cell transformation by FLT3 ITD in acute myeloid leukemia involves oxidative inactivation of the tumor suppressor proteintyrosine phosphatase DEP-1/PTPRJ. Blood 119: 4499-4511.
- Ly, B.T., et al. 2013. Inhibition of FLT3 expression by green tea catechins in FLT3 mutated-AML cells. PLoS ONE 8: e66378.

Try Flt-3/Flk-2 (SF1.340): sc-19635 or Flt-3/Flk-2 (BV10): sc-21788, our highly recommended monoclonal alternatives to Flt-3/Flk-2 (S-18). Also, for AC, HRP, FITC, PE, Alexa Fluor® 488 and Alexa Fluor® 647 conjugates, see Flt-3/Flk-2 (SF1.340): sc-19635.