SANTA CRUZ BIOTECHNOLOGY, INC.

Tenomodulin (N-14): sc-49325

BACKGROUND

Tenomodulin (TEM), also designated chondromodulin-I-like protein (ChM-1L), myodulin or tendin, acts as an angiogenesis inhibitor. It is a single-pass type II membrane protein that belongs to the chondromodulin family of proteins. The deduced 317 amino acid protein contains an N-terminal transmembrane domain and a putative antiangiogenic domain comprised of 8 cysteines. Human Tenomodulin shares 96% amino acid identity with mouse Tenomodulin, and it shares 65% identity in a 65 amino acid C-terminal stretch with chondromodulin-I. Tenomodulin is expressed in skeletal muscle, eye, whole rib and dense connective tissues, such as epimysium and tendon.

REFERENCES

- 1. Yamana, K., et al. 2001. Molecular cloning and characterization of ChM-1L, a novel membrane molecule similar to chondromodulin-I. Biochem. Biophys. Res. Commun. 280: 1101-1106.
- 2. Shukunami, C., et al. 2001. Molecular cloning of Tenomodulin, a novel chondromodulin-I related gene. Biochem. Biophys. Res. Commun. 280: 1323-1327.
- 3. Online Mendelian Inheritance in Man, OMIM™. 2002. Johns Hopkins University, Baltimore, MD. MIM Number: 300459. World Wide Web URL: http://www.ncbi.nlm.nih.gov/omim/

CHROMOSOMAL LOCATION

Genetic locus: TNMD (human) mapping to Xq22.1; Tnmd (mouse) mapping to X E3.

SOURCE

Tenomodulin (N-14) is an affinity purified goat polyclonal antibody raised against a peptide mapping within an extracellular domain of Tenomodulin of human origin.

PRODUCT

Each vial contains 200 µg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-49325 P, (100 µg peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

APPLICATIONS

Tenomodulin (N-14) is recommended for detection of Tenomodulin of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Tenomodulin (N-14) is also recommended for detection of Tenomodulin in additional species, including equine, canine, bovine and porcine.

Suitable for use as control antibody for Tenomodulin siRNA (h): sc-61665, Tenomodulin siRNA (m): sc-61666, Tenomodulin shRNA Plasmid (h): sc-61665-SH, Tenomodulin shRNA Plasmid (m): sc-61666-SH, Tenomodulin shRNA (h) Lentiviral Particles: sc-61665-V and Tenomodulin shRNA (m) Lentiviral Particles: sc-61666-V.

Molecular Weight of Tenomodulin: 37 kDa.

SELECT PRODUCT CITATIONS

- 1. Watahiki, J., et al. 2008. Identification of differentially expressed genes in mandibular condylar and tibial growth cartilages using laser microdissection and fluorescent differential display: chondromodulin-I (ChM-1) and tenomodulin (TeM) are differentially expressed in mandibular condylar and other growth cartilages. Bone 42: 1053-1060.
- 2. Rui, Y.F., et al. 2010. Isolation and characterization of multipotent rat tendon-derived stem cells. Tissue Eng. Part A 16: 1549-1558.
- 3. Fang, B., et al. 2010. Isolation and characterization of multipotent progenitor cells from the human fetal aorta wall. Exp. Biol. Med. 235: 130-138.
- 4. Buhrmann, C., et al. 2011. Curcumin modulates nuclear factor κB (NFκB)mediated inflammation in human tenocytes in vitro: role of the phosphatidylinositol 3-kinase/Akt pathway. J. Biol. Chem. 286: 28556-28566
- 5. Backman, L.J., et al. 2011. Substance P is a mechanoresponsive, autocrine regulator of human tenocyte proliferation. PLoS ONE 6: e27209.
- 6. Busch, F., et al. 2012. Resveratrol modulates interleukin-1β-induced phosphatidylinositol 3-kinase and nuclear factor kB signaling pathways in human tenocytes. J. Biol. Chem. 287: 38050-38063.
- 7. Fong, G., et al. 2013. Human tenocytes are stimulated to proliferate by acetylcholine through an EGFR signalling pathway. Cell Tissue Res. 351: 465-475.
- 8. Chai, W., et al. 2013. Effect of growth and differentiation factor 6 on the tenogenic differentiation of bone marrow-derived mesenchymal stem cells. Chin. Med. J. 126: 1509-1516.
- 9. Ni, M., et al. 2013. Engineered scaffold-free tendon tissue produced by tendon-derived stem cells. Biomaterials 34: 2024-2037.