Ferrochelatase (G-16): sc-49664

The Power to Question

BACKGROUND

Ferrochelatase, also designated Heme synthetase or protoheme ferro-lyase, is the terminal enzyme of protoheme biosynthesis that catalyzes the ferrous form of iron insertion into protoporphyrin IX. Mature ferrochelatase is a homodimeric, mitochondrial membrane-associated protein translated downstream of an N-terminal 54-amino acid transit peptide. Ferrochelatase contains 2 nitric oxide (NO)-sensitive clusters and coordinated 2FE-2S clusters which may potentially serve as a nitric oxide sensor. Defects in the gene encoding the Ferrochelatase enzyme, FECH, cause erythropoietic protoporhyria (EPP), which is a dominantly inherited disease of porphyrin metabolism characterized by photosensitivity and hepatobiliary disease.

REFERENCES

- 1. Davies, R., et al. 2005. Hepatic gene expression in protoporphyic Fech mice is associated with cholestatic injury but not a marked depletion of the heme regulatory pool. Am. J. Pathol. 166: 1041-1053.
- 2. Di Pierro, E., et al. 2005. A point mutation affecting an SP1 binding site in the promoter of the ferrochelatase gene impairs gene transcription and causes erythropoietic protoporphyria. Exp. Hematol. 33: 584-591.
- Elder, G., et al. 2005. Normal dermal ferrochelatase activity does not protect human skin from protoporphyrin-induced photosensitivity. J. Invest. Dermatol. 125: 580.
- Franco, R., et al. 2005. Porphyrin-substrate binding to murine ferrochelatase: effect on the thermal stability of the enzyme. Biochem. J. 386: 599-605.
- Najahi-Missaoui, W., et al. 2005. Production and characterization of erythropoietic protoporphyric heterodimeric ferrochelatases. Blood 106: 1098-1104.
- Goodwin, R.G., et al. 2005. Photosensitivity and acute liver injury in myeloproliferative disorder secondary to late-onset protoporphyria caused by deletion of a ferrochelatase gene in hematopoietic cells. Blood 107: 60-62.
- Ohgari, Y., et al. 2005. Ferrochelatase consisting of wildtype and mutated subunits from patients with a dominant-inherited disease, erythropoietic protoporphyria, is an active but unstable dimer. Hum. Mol. Genet. 14: 327-334.
- Shipovskov, S., et al. 2005. Metallation of the transition-state inhibitor N-methyl mesoporphyrin by ferrochelatase: implications for the catalytic reaction mechanism. J. Mol. Biol. 352: 1081-1090.
- 9. Sobotka, R., et al. 2005. Photosystem II assembly in CP47 mutant of Synechocystis sp. PCC 6803 is dependent on the level of chlorophyll precursors regulated by ferrochelatase. J. Biol. Chem. 280: 31595-31602.

CHROMOSOMAL LOCATION

Genetic locus: FECH (human) mapping to 18q21.31; Fech (mouse) mapping to 18 E1.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

SOURCE

Ferrochelatase (G-16) is an affinity purified goat polyclonal antibody raised against a peptide mapping within an internal region of Ferrochelatase of human origin.

PRODUCT

Each vial contains 200 μ g lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-49664 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

APPLICATIONS

Ferrochelatase (G-16) is recommended for detection of mitochondrial precursor and mature Ferrochelatase of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Ferrochelatase (G-16) is also recommended for detection of mitochondrial precursor and mature Ferrochelatase in additional species, including equine, canine, bovine, porcine and avian.

Suitable for use as control antibody for Ferrochelatase siRNA (h): sc-60631, Ferrochelatase siRNA (m): sc-60632, Ferrochelatase shRNA Plasmid (h): sc-60631-SH, Ferrochelatase shRNA Plasmid (m): sc-60632-SH, Ferrochelatase shRNA (h) Lentiviral Particles: sc-60631-V and Ferrochelatase shRNA (m) Lentiviral Particles: sc-60632-V.

Molecular Weight of Ferrochelatase homodimer: 86 kDa.

Molecular Weight of Ferrochelatase monomer: 40-43 kDa.

Positive Controls: Jurkat whole cell lysate: sc-2204.

RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use donkey anti-goat IgG-HRP: sc-2020 (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible donkey anti-goat IgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use donkey anti-goat IgG-FITC: sc-2024 (dilution range: 1:100-1:400) or donkey anti-goat IgG-TR: sc-2783 (dilution range: 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**