## BACKGROUND

Epilepsy affects about 0.5\% of the world's population and has a large genetic component. Epilepsy results from an electrical hyperexcitability in the central nervous system. Potassium channels are important regulators of electrical signaling, determining the firing properties and responsiveness of a variety of neurons. Benign familial neonatal convulsions (BFNC), an autosomal dominant epilepsy of infancy, has been shown to be caused by mutations in the KCNO2 or the KCNQ3 potassium channel genes. KCNQ2 and KCNO3 are voltage-gated potassium channel proteins with six putative transmembrane domains. Both proteins display a broad distribution within the brain, with expression patterns that largely overlap. Mutations of KCNQ4 affect the functions of sensory outer hair cells and lead to deafness.

## REFERENCES

1. Singh, N.A., et al. 1998. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat. Genet. 18: 25-29.
2. Charlier, C., et al. 1998. A pore mutation in a novel KOT-like potassium channel gene in an idiopathic epilepsy family. Nat. Genet. 18: 53-55.
3. Schroeder, B.C., et al. 1998. Moderate loss of function of cyclic-AMP-modulated KCNO2/KCN03 K+ channels causes epilepsy. Nature 396: 687-690.
4. Biervert, C., et al. 1998. A potassium channel mutation in neonatal human epilepsy. Science 279: 403-406.
5. Wang, H.S., et al. 1998. KCNO2 and KCNO3 potassium channel subunits: molecular correlates of the M-channel. Science 282: 1890-1893.
6. Yang, W.P., et al. 1998. Functional expression of two KvLOT1-related potassium channels responsible for an inherited idiopathic epilepsy. J. Biol. Chem. 273: 19419-19423.
7. Tinel, N., et al. 1998. The KCNQ2 potassium channel: splice variants, functional and developmental expression. Brain localization and comparison with KCNQ3. FEBS Lett. 438: 171-176.
8. Kubisch, C., et al. 1999. KCNO4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96: 437-446.

## CHROMOSOMAL LOCATION

Genetic locus: KCNO4 (human) mapping to 1p34.2; Kcnq4 (mouse) mapping to 4 D2.2.

## SOURCE

KCNO4 (H-130) is a rabbit polyclonal antibody raised against amino acids 349-478 mapping within an internal region of KCNO4 of human origin.

## PRODUCT

Each vial contains $200 \mu \mathrm{glg}$ in 1.0 ml of PBS with $<0.1 \%$ sodium azide and $0.1 \%$ gelatin.

## APPLICATIONS

KCNQ4 (H-130) is recommended for detection of KCNQ4 of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [ $1-2 \mu \mathrm{~g}$ per $100-500 \mu \mathrm{~g}$ of total protein ( 1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500), immunohistochemistry (including paraffin-embedded sections) (starting dilution $1: 50$, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

KCNO4 (H-130) is also recommended for detection of KCNO4 in additional species, including equine, canine, bovine and porcine.

Suitable for use as control antibody for KCNQ4 siRNA (h): sc-42503, KCNQ4 siRNA (m): sc-42504, KCNO4 shRNA Plasmid (h): sc-42503-SH, KCNO4 shRNA Plasmid (m): sc-42504-SH, KCNO4 shRNA (h) Lentiviral Particles: sc-42503-V and KCNQ4 shRNA (m) Lentiviral Particles: sc-42504-V.

Molecular Weight of KCNQ4: 77 kDa .

## DATA



KCNO4 (H-130): sc-50417. Immunoperoxidase staining of formalin fixed, paraffin-embedded human skeletal muscle tissue showing cytoplasmic and membrane staining of myocytes.

## STORAGE

Store at $4^{\circ} \mathrm{C}$, ${ }^{* *}$ DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

## PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.


## RESEARCH USE

For research use only, not for use in diagnostic procedures.

