SANTA CRUZ BIOTECHNOLOGY, INC.

Mitotic Cells (8B3G): sc-53006

BACKGROUND

The life cycle of a eukaryotic cell consists of various phases including mitosis (M-phase) and synthesis (S-phase). During M-phase the cell divides into two identical daughter cells and chromosome condensation and spindle formation are microscopically visible. In S-phase the DNA of a cell is replicated which can be detected using biochemical techniques. In between the M and S phase two gap phases occur: the G₁-phase, the gap between mitosis and the start of DNA replication, and G₂-phase, the gap between completion of DNA replication and the onset of mitosis. From G₁-phase a cell can leave the cell cycle and enter G₀, a quiescent phase. Regulation of the cell cycle predominantly occurs at three major control points, which govern the transition from G₀ to G₁, from G₁ to S and from G₂ to M-phase.

REFERENCES

- Matthews, H.R. 1980. Chromosome condensation in mitosis. J. Theor. Biol. 83: 367-368.
- 2. Larsson, O. and Zetterberg, A. 1995. Existence of a commitment program for mitosis in early G_1 in tumor cells. Cell Prolif. 28: 33-43.
- Brandeis, M. and Hunt, T. 1996. The proteolysis of mitotic cyclins in mammalian of mitosis until the onset of S phase. EMBO J. 15: 5280-5289.
- Shifrin, V.I., Davis, R.J. and Neel, B.G. 1997. Phosphorylation of proteintyrosine phosphatase PTP-1B on identical sites suggests activation of a common signaling pathway during mitosis and stress response in mammalian cells. J. Biol. Chem. 272: 2957-2962.
- Ouspenski, I.I., Cabello, O.A. and Brinkley, B.R. 2000. Chromosome condensation factor Brn1p is required for chromatid separation in mitosis. Mol. Biol. Cell 11: 1305-1313.
- Cleary, A.L. 2001. Plasma membrane-cell wall connections: roles in mitosis and cytokinesis revealed by plasmolysis of *Tradescantia virginiana* leaf epidermal cells. Protoplasma 215: 21-34.
- Clarke, D.J., Segal, M., Andrews, C.A., Rudyak, S.G., Jensen, S., Smith, K. and Reed, S.I. 2003. S-phase checkpoint controls mitosis via an APCindependent Cdc20p function. Nat. Cell Biol. 5: 928-935.
- Rape, M. and Kirschner, M.W. 2004. Autonomous regulation of the anaphase-promoting complex couples mitosis to S-phase entry. Nature 432: 588-595.
- Gotoh, E. and Durante, M. 2006. Chromosome condensation outside of mitosis: mechanisms and new tools. J. Cell. Physiol. 209: 297-304.

SOURCE

Mitotic Cells (8B3G) is a mouse monoclonal antibody raised against total lysate of the human bladder carcinoma cell line T24.

PRODUCT

Each vial contains 200 μg lgM kappa light chain in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

APPLICATIONS

Mitotic Cells (8B3G) is recommended for detection of mitotic cells of human and zebrafish origin by immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and flow cytometry (1 μ g per 1 x 10⁶ cells).

RECOMMENDED SUPPORT REAGENTS

To ensure optimal results, the following support reagents are recommended: 1) Immunofluorescence: use m-IgG κ BP-FITC: sc-516140 or m-IgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850.

STORAGE

Store at 4° C, **D0 NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.