IFN-β (MIB-2B2.2): sc-53592

The Power to Question

BACKGROUND

The genes encoding type I interferons (IFNs), which include 14 IFN- α genes, one IFN- β gene, one IFN- ω (also known as IFN- α II1) gene and a number of IFN- ω pseudogenes, are clustered on human chromosome 9. IFN- α and - β are cytokines that are widely known to induce potent antiviral activity. They exert a variety of other biological effects, including antitumor and immuno-modulatory activities, and are increasingly used clinically to treat a range of malignancies, myelodysplasias and autoimmune diseases. IFN- ω is antigenically different from human IFN- α , IFN- β or IFN- γ , but is a component of natural mixtures of IFN species produced by virus-induced leukocytes or Burkitt's lymphoma cells. The type I interferon receptor (IFN- α R) interacts with IFN- α , IFN- β and IFN- ω , and seems to be a multisubunit receptor.

REFERENCES

- 1. Adolf, G.R. 1987. Antigenic structure of human interferon- ω 1 (interferon α III): comparison with other human interferons. J. Gen. Virol. 68: 1669-1676.
- 2. Lim, J.K., et al. 1994. Intrinsic ligand binding properties of the human and bovine α -interferon receptors. FEBS Lett. 350: 281-286.
- 3. Hussain, M., et al. 1996. Identification of interferon- α 7, - α 14, and - α 21 variants in the genome of a large human population. J. Interferon Cytokine Res. 16: 853-859.
- 4. Mire-Sluis, A.R., et al. 1996. An anti-cytokine bioactivity assay for interferons -α, -β and -ω. J. Immunol. Methods 195: 55-61.
- Cutrone, E.C., et al. 1997. Contributions of cloned type I interferon receptor subunits to differential ligand binding. FEBS Lett. 404: 197-202.
- 6. Vannucchi, S., et al. 2005. TRAIL is a key target in S-phase slowing-dependent apoptosis induced by interferon- β in cervical carcinoma cells. Oncogene 24: 2536-2546.
- 7. Siren, J., et al. 2005. IFN- α regulates TLR-dependent gene expression of IFN- α , IFN- β , IL-28, and IL-29. J. Immunol. 174: 1932-1937.
- 8. Molnarfi, N., et al. 2005. The production of IL-1 receptor antagonist in IFN-β-stimulated human monocytes depends on the activation of phosphatidylinositol 3-kinase but not of Stat1. J. Immunol. 174: 2974-2980.

CHROMOSOMAL LOCATION

Genetic locus: Ifnb1 (mouse) mapping to 4 C4.

SOURCE

IFN- β (MIB-2B2.2) is a Armenian hamster monoclonal antibody raised against recombinant IFN- β of mouse origin.

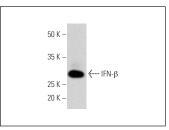
PRODUCT

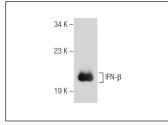
Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

APPLICATIONS


IFN- β (MIB-2B2.2) is recommended for detection of IFN- β of mouse origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) and immunoprecipitation [1-2 μ g per 100-500 μ g of total protein (1 ml of cell lysate)].


Suitable for use as control antibody for IFN- β siRNA (m): sc-39604, IFN- β shRNA Plasmid (m): sc-39604-SH and IFN- β shRNA (m) Lentiviral Particles: sc-39604-V.

Molecular Weight of IFN-β: 20 kDa.

Positive Controls: CTLL-2 cell lysate: sc-2242.

DATA

IFN-β (MIB-2B2.2): sc-53592. Western blot analysis of IFN-β expression in CTLL-2 whole cell lysate.

IFN-β (MIB-2B2.2): sc-53592. Western blot analysis of mouse recombinant IFN-β.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com