γ Tubulin (14C11): sc-53777

The Power to Question

BACKGROUND

TUB4, the gene for <code>Saccharomyces cerevisiae</code> γ Tubulin, encodes a 473 amino acid structural protein that localizes to the spindle pole body. γ Tubulin, an essential protein for cell growth, organizes microtubule arrays in the nucleus and cytoplasm. γ Tubulin-depleted cells fail to form functional spindles and arrest during nuclear division. γ Tubulin associates with spindle body components Spc97 and Spc98 to form the γ Tubulin complex. The budding yeast γ Tubulin complex contains one molecule each of Spc97 and Spc98 and two molecules of γ Tubulin. In the SPB, Spc110 binds Spc97 and Spc98 of the γ Tubulin complex. 2D gel analysis indicates five isoforms of γ Tubulin. The phosphorylation of γ Tubulin at Tyr 445 plays a regulatory role in microtubule formation. The incidence rate for this phosphorylation event peaks during G1.

REFERENCES

- Sobel, S.G. and Snyder, M. 1995. A highly divergent γ Tubulin gene is essential for cell growth and proper microtubule organization in Saccharomyces cerevisiae. J. Cell Biol. 131: 1775-1788.
- Spang, A., et al. 1996. γ Tubulin-like Tub4p of Saccharomyces cerevisiae is associated with the spindle pole body substructures that organize microtubules and is required for mitotic spindle formation. J. Cell Biol. 134: 429-441.
- 3. Geissler, S., et al. 1996. The spindle pole body component Spc98p interacts with the γ Tubulin-like Tub4p of *Saccharomyces cerevisiae* at the sites of microtubule attachment. EMBO J. 15: 3899-3911.
- 4. Knop, M., et al. 1997. The spindle pole body component Spc97p interacts with the γ Tubulin of *Saccharomyces cerevisiae* and functions in microtubule organization and spindle pole body duplication. EMBO J. 16: 1550-1564.
- 5. Knop, M. and Schiebel, E. 1997. Spc98p and Spc97p of the yeast γ Tubulin complex mediate binding to the spindle pole body via their interaction with Spc110p. EMBO J. 16: 6985-6995.
- 6. Vinh, D.B., et al. 2002. Reconstitution and characterization of budding yeast γ Tubulin complex. Mol. Biol. Cell 13: 1144-1157.
- 7. Vogel, J., et al. 2001. Phosphorylation of γ Tubulin regulates microtubule organization in budding yeast. Dev. Cell 1: 621-631.

CHROMOSOMAL LOCATION

Genetic locus: TUBG1 (human) mapping to 17q21; Tubg1 (mouse) mapping to 11 D.

SOURCE

 γ Tubulin (14C11) is a mouse monoclonal antibody raised against γ Tubulin of human origin.

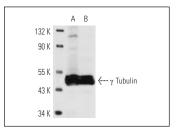
STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

PRODUCT

Each vial contains 100 μg lgG_{2b} in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

APPLICATIONS


 γ Tubulin (14C11) is recommended for detection of γ Tubulin of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) and immunoprecipitation [1–2 μ g per 100–500 μ g of total protein (1 ml of cell lysate)].

Suitable for use as control antibody for γ Tubulin siRNA (h): sc-29322, γ Tubulin siRNA (m): sc-29323, γ Tubulin shRNA Plasmid (h): sc-29322-SH, γ Tubulin shRNA Plasmid (m): sc-29323-SH, γ Tubulin shRNA (h) Lentiviral Particles: sc-29322-V and γ Tubulin shRNA (m) Lentiviral Particles: sc-29323-V.

Molecular Weight of y Tubulin: 50 kDa.

Positive Controls: HeLa whole cell lysate: sc-2200, A-431 whole cell lysate: sc-2201 or K-562 whole cell lysate: sc-2203.

DATA

 γ Tubulin (14C11): sc-53777. Western blot analysis of γ Tubulin expression in HeLa (**A**) and Hep G2 (**B**) whole cell lysates

SELECT PRODUCT CITATIONS

- Agapova, L.S., et al. 2008. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 3. Inhibitory effect of SkQ1 on tumor development from p53-deficient cells. Biochem. Mosc. 73: 1300-1316.
- 2. Khromova, N.V., et al. 2009. p53 hot-spot mutants increase tumor vascularization via ROS-mediated activation of the HIF1/VEGF-A pathway. Cancer Lett. 276: 143-151.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com