SANTA CRUZ BIOTECHNOLOGY, INC.

Dok-7 (M-18): sc-55166

The Power to Question

BACKGROUND

The downstream of kinase family (Dok1-7) are members of a class of "docking" proteins that include the tyrosine kinase substrates IRS-1 and Cas, which contain multiple tyrosine residues and putative SH2 binding sites. Based on their similarities, the Dok family of proteins can be divided into three subgroups: Dok-1/2/3, Dok-4/5/6 and Dok-7. Through its interaction with musclespecific receptor kinase (MuSK), Dok-7 is crucial for neuromuscular synaptogenesis and for MuSK activation. Mice lacking Dok-7 do not form neuromuscular synapses nor acetylcholine receptor clusters. Mutations in the Dok-7 gene can cause congenital myasthenic syndromes (CMA) — recessively inherited disorders characterized by muscle weakness.

REFERENCES

- Grimm, J., Sachs, M., Britsch, S., Di Cesare, S., Schwarz-Romond, T., Alitalo, K. and Birchmeier, W. 2001. Novel p62dok family members, dok-4 and dok-5, are substrates of the c-Ret receptor tyrosine kinase and mediate neuronal differentiation. J. Cell Biol. 154: 345-354.
- Crowder, R.J., Enomoto, H., Yang, M., Johnson, E.M. and Milbrandt, J. 2004. Dok-6, a Novel p62 Dok family member, promotes Ret-mediated neurite outgrowth. J. Biol. Chem. 279: 42072-42081.
- Okada, K., Inoue, A., Okada, M., Murata, Y., Kakuta, S., Jigami, T., Kubo, S., Shiraishi, H., Eguchi, K., Motomura, M., Akiyama, T., Iwakura, Y., Higuchi, O. and Yamanashi, Y. 2006. The muscle protein Dok-7 is essential for neuromuscular synaptogenesis. Science 312: 1802-1805.
- Beeson, D., Higuchi, O., Palace, J., Cossins, J., Spearman, H., Maxwell, S., Newsom-Davis, J., Burke, G., Fawcett, P., Motomura, M., Muller, JS., Lochmuller, H., Slater, C., Vincent, A. and Yamanashi, Y. 2006. Dok-7 mutations underlie a neuromuscular junction synaptopathy. Science 313: 1975-1978.

CHROMOSOMAL LOCATION

Genetic locus: Dok7 (mouse) mapping to 5 B2.

SOURCE

Dok-7 (M-18) is an affinity purified goat polyclonal antibody raised against a peptide mapping at the C-terminus of Dok-7 of mouse origin.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-55166 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

STORAGE

Store at 4° C, **D0 NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

APPLICATIONS

Dok-7 (M-18) is recommended for detection of Dok-7 of mouse origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Suitable for use as control antibody for Dok-7 siRNA (m): sc-61853, Dok-7 shRNA Plasmid (m): sc-61853-SH and Dok-7 shRNA (m) Lentiviral Particles: sc-61853-V.

Molecular Weight of Dok-7: 55 kDa.

RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use donkey anti-goat IgG-HRP: sc-2020 (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible donkey anti-goat IgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluo-rescence: use donkey anti-goat IgG-FITC: sc-2024 (dilution range: 1:100-1:400) or donkey anti-goat IgG-TR: sc-2783 (dilution range: 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.