# SANTA CRUZ BIOTECHNOLOGY, INC.

# CCS (H-7): sc-55561



## BACKGROUND

Cu-Zn superoxide dismutase-1 (SOD-1) is a well characterized cytosolic scavenger of oxygen free radicals that requires copper and zinc binding to potentiate its enzymatic activity. Copper chaperone for SOD-1 (CCS) is essential for the incorporation of copper into SOD-1, and therefore is necessary for its enzymatic activity. CCS prevents copper ions from binding to intracellular copper scavengers and provides the SOD-1 enzyme with the necessary copper cofactor. CCS escorts copper only to SOD-1 and fails to deliver copper to proteins in the mitochondria, nucleus or secretory pathway. CCS interacts with both wildtype and mutated forms of SOD-1 through CCS domains that are homologous in SOD-1. CCS exists as a homodimer that may form a heterodimer with SOD-1 during copper loading. While many tissues express CCS, the chaperone is most abundant in the kidney, liver and Purkinje cells in the neuropil of the central nervous system.

#### **CHROMOSOMAL LOCATION**

Genetic locus: CCS (human) mapping to 11q13.2; Ccs (mouse) mapping to 19 A.

#### SOURCE

CCS (H-7) is a mouse monoclonal antibody raised against amino acids 1-274 representing full length CCS of human origin.

#### PRODUCT

Each vial contains 200  $\mu g$  lgG\_1 kappa light chain in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

CCS (H-7) is available conjugated to agarose (sc-55561 AC), 500  $\mu$ g/0.25 ml agarose in 1 ml, for IP; to HRP (sc-55561 HRP), 200  $\mu$ g/ml, for WB, IHC(P) and ELISA; to either phycoerythrin (sc-55561 PE), fluorescein (sc-55561 FITC), Alexa Fluor<sup>®</sup> 488 (sc-55561 AF548), Alexa Fluor<sup>®</sup> 546 (sc-55561 AF546), Alexa Fluor<sup>®</sup> 594 (sc-55561 AF594) or Alexa Fluor<sup>®</sup> 647 (sc-55561 AF647), 200  $\mu$ g/ml, for WB (RGB), IF, IHC(P) and FCM; and to either Alexa Fluor<sup>®</sup> 680 (sc-55561 AF680) or Alexa Fluor<sup>®</sup> 790 (sc-55561 AF790), 200  $\mu$ g/ml, for Near-Infrared (NIR) WB, IF and FCM.

### **APPLICATIONS**

CCS (H-7) is recommended for detection of CCS of mouse, rat and human origin by Western Blotting (starting dilution 1:100, dilution range 1:100-1:1000), immunoprecipitation [1-2  $\mu$ g per 100-500  $\mu$ g of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500), immunohistochemistry (including paraffin-embedded sections) (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Suitable for use as control antibody for CCS siRNA (h): sc-29956, CCS siRNA (m): sc-29957, CCS shRNA Plasmid (h): sc-29956-SH, CCS shRNA Plasmid (m): sc-29957-SH, CCS shRNA (h) Lentiviral Particles: sc-29956-V and CCS shRNA (m) Lentiviral Particles: sc-29957-V.

Molecular Weight of CCS: 35 kDa.

Positive Controls: rat brain extract: sc-2392, mouse brain extract: sc-2253 or HeLa whole cell lysate: sc-2200.

## STORAGE

Store at 4° C, \*\*DO NOT FREEZE\*\*. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

## DATA





CCS (H-7): sc-55561. Western blot analysis of CCS expression in HeLa (A), c4 (B) and 3611-RF (C) whole cell lysates and mouse brain (D) and rat brain (E) tissue extracts.

CCS (H-7): sc-55561. Immunoperoxidase staining of formalin fixed, paraffin-embedded human testis tissue showing cytoplasmic staining of Leydig cells.

#### **SELECT PRODUCT CITATIONS**

- Bertinato, J., et al. 2010. Decreased erythrocyte CCS content is a biomarker of copper overload in rats. Int. J. Mol. Sci. 11: 2624-2635.
- Huppke, P., et al. 2012. Molecular and biochemical characterization of a unique mutation in CCS, the human copper chaperone to superoxide dismutase. Hum. Mutat. 33: 1207-1215.
- Sudhahar, V., et al. 2019. Copper transporter ATP7A (copper-transporting P-type ATPase/Menkes ATPase) limits vascular inflammation and aortic aneurysm development: role of microRNA-125b. Arterioscler. Thromb. Vasc. Biol. 39: 2320-2337.
- Tsang, T., et al. 2020. Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma. Nat. Cell Biol. 22: 412-424.
- Grasso, M., et al. 2021. The copper chaperone CCS facilitates copper binding to MEK1/2 to promote kinase activation. J. Biol. Chem. 297: 101314.
- Tsang, T., et al. 2022. BRAFV600E-driven lung adenocarcinoma requires copper to sustain autophagic signaling and processing. Mol. Cancer Res. 20: 1096-1107.
- Chojnowski, J.E., et al. 2022. Copper modulates the catalytic activity of protein kinase CK2. Front. Mol. Biosci. 9: 878652.
- Lee, V.J. and Heffern, M.C. 2022. Structure-activity assessment of flavonoids as modulators of copper transport. Front. Chem. 10: 972198.
- Tasic, D., et al. 2022. Effects of fructose and stress on rat renal copper metabolism and antioxidant enzymes function. Int. J. Mol. Sci. 23: 9023.
- Abdelsaid, K., et al. 2022. Exercise improves angiogenic function of circulating exosomes in type 2 diabetes: role of exosomal SOD3. FASEB J. 36: e22177.

#### **RESEARCH USE**

For research use only, not for use in diagnostic procedures.

Alexa Fluor® is a trademark of Molecular Probes, Inc., Oregon, USA