HHV-6 (20): sc-57804

The Power to Overtio

BACKGROUND

The *Herpesviridae* family consists of DNA viruses that cause diseases in humans and other animals. This family is comprised of eight distinct viruses: HHV-1-HHV-8. Human herpes virus type 6 (HHV-6) and HHV-7 are associated with febrile illnesses and the childhood disease exanthem subitum, while HHV-8 resembles the Epstein-Barr virus in its possible transforming properties and may play a role in lymphomas and Kaposi's sarcoma. HHV-6, a newly described β -herpesvirus that shares homology with cytomegalovirus (CMV), consists of two closely related variants: HHV-6A and HHV-6B. HHV-6 infection is followed by persistence and latency in different tissues including monocytes/macrophages, salivary glands, brain and kidney. HHV-6 activation may play a role in the pathogenesis of certain demyelinative diseases such as progressive multifocal leukoencephalopathy (PML) and multiple sclerosis (MS). HHV-6 DNA is normally found as a marker of active viral infection in serum samples of MS patients.

REFERENCES

- Ablashi, D.V., Zompetta, C., Lease, C., Josephs, S.F., Balachandra, N., Komaroff, A.L., Krueger, G.R., Henry, B., Lukau, J. and Salahuddin, S.Z. 1994. Human herpesvirus 6 (HHV-6) and chronic fatigue syndrome (CFS). Can. Dis. Wkly. Rep. 17: 33-40.
- 2. Jayavasu, C., Balachandra, K., Wongchuree, S., Kositanont, U. and Warachit, P. 1997. The latency rate of human herpesvirus 6 (HHV-6) in positive and negative human immunodeficiency virus (HIV) infection of intravenous drug users (IVDU). Asian Pac. J. Allergy Immunol. 15: 29-33.
- Levy, J.A. 1997. Three new human herpesviruses (HHV-6, -7 and -8). Lancet 349: 558-563.
- Blumberg, B.M., Mock, D.J., Powers, J.M., Ito, M., Assouline, J.G., Baker, J.V., Chen, B. and Goodman, A.D. 2000. The HHV-6 paradox: ubiquitous commensal or insidious pathogen? A two-step *in situ* PCR approach. J. Clin. Virol. 16: 159-178.
- Abdel-Haq, N.M. and Asmar, B.I. 2004. Human herpesvirus 6 (HHV-6) infection. Indian J. Pediatr. 71: 89-96.
- Caserta, M.T., McDermott, M.P., Dewhurst, S., Schnabel, K., Carnahan, J.A., Gilbert, L., Lathan, G., Lofthus, G.K. and Hall, C.B. 2004. Human herpesvirus 6 (HHV-6) DNA persistence and reactivation in healthy children. J. Pediatr. 145: 478-484.
- 7. Hernández-Losa, J., Fedele, C.G., Pozo, F., Tenorio, A., Fernández, V., Castellví, J., Parada, C. and Ramón y Cajal, S. 2005. Lack of association of polyomavirus and herpesvirus types 6 and 7 in human lymphomas. Cancer 103: 293-298.
- 8. Merk, J., Schmid, F.X., Fleck, M., Schwarz, S., Lehane, C., Boehm, S., Salzberger, B. and Birnbaum, D.E. 2005. Fatal pulmonary failure attributable to viral pneumonia with human herpes virus 6 (HHV-6) in a young immunocompetent woman. J. Intensive Care Med. 20: 302-306.
- 9. Debarbieux, S., Deroo-Berger, M.C., Grande, S., Najioullah, F., Kanitakis, J., Faure, M. and Claudy, A. 2006. Drug hypersensitivity syndrome associated with a primary HHV-6 infection. Ann. Dermatol. Venereol. 133: 145-147.

SOURCE

HHV-6 (20) is a mouse monoclonal antibody raised against viral lysate.

PRODUCT

Each vial contains 100 μg lgG_1 in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

APPLICATIONS

HHV-6 (20) is recommended for detection of strains A and B of HHV-6 origin by immunoprecipitation [1-2 μg per 100-500 μg of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and immunohistochemistry (including paraffin-embedded sections) (starting dilution 1:50, dilution range 1:50-1:500).

SELECT PRODUCT CITATIONS

- Siddon, A., Lozovatsky, L., Mohamed, A. and Hudnall, S.D. 2012. Human herpesvirus 6 positive Reed-Sternberg cells in nodular sclerosis Hodgkin lymphoma. Br. J. Haematol. 158: 635-643.
- 2. Skuja, S., Svirskis, S. and Murovska, M. 2021. Human herpesvirus-6 and -7 in the brain microenvironment of persons with neurological pathology and healthy people. Int. J. Mol. Sci. 22: 2364.
- 3. Jain, N., Smirnovs, M., Strojeva, S., Murovska, M. and Skuja, S. 2021. Chronic alcoholism and HHV-6 infection synergistically promote neuroinflammatory microglial phenotypes in the substantia nigra of the adult human brain. Biomedicines 9: 1216.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com