SANTA CRUZ BIOTECHNOLOGY, INC.

Homocitrate Synthase (31F5): sc-57832

BACKGROUND

Homocitrate Synthase (acetyl-coenzyme A:2-ketoglutarate C-transferase) is the first enzyme in the lysine biosynthetic pathway, a feedback loop regulated by L-lysine that is common to fungi and some bacteria. Homocitrate Synthase specifically catalyzes the condensation of AcCoA and α -ketoglutarate, yielding Homocitrate and CoA. As a metalloenzyme, Homocitrate Synthase contains zinc, advocating a chemical mechanism in which α -ketoglutarate initially binds to the active site Zn, through the use of its α -oxo and α -carboxylate groups, followed by acetyl-CoA. Homocitrate Synthase is expressed not only in the nucleus of the yeast *Saccharomyces cerevisiae*, but also in the cytoplasm and mitichondria of *Penicillium chrysogenum*. This difference in localization suggests that Homocitrate Synthase, in addition to its catalytic function, also performs a regulatory function.

REFERENCES

- 1. Tucci, A.F. 1969. Feedback inhibition of lysine biosynthesis in yeast. J. Bacteriol. 99: 624-625.
- Tucci, A.F. and Ceci, L.N. 1973. Homocitrate Synthase from yeast. Arch. Biochem. Biophys. 153: 742-750.
- Gaillardin, C. and Heslot, H. 1979. Evidence for mutations in the structural gene for Homocitrate Synthase in *Saccharomycopsis lipolytica*. Mol. Gen. Genet. 172: 185-192.
- Jaklitsch, W.M. and Kubicek, C.P. 1990. Homocitrate Synthase from *Penicillium chrysogenum*. Localization, purification of the cytosolic isoenzyme and sensitivity to lysine. Biochem. J. 269: 247-253.
- Chen, S., Brockenbrough, J.S., Dove, J.E. and Aris, J.P. 1997. Homocitrate Synthase is located in the nucleus in the yeast *Saccharomyces cerevisiae*. J. Biol. Chem. 272: 10839-10846.
- Bañuelos, O., Casqueiro, J., Fierro, F., Hijarrubia, M.J., Gutierrez, S. and Martín, J.F. 1999. Characterization and lysine control of expression of the lys1 gene of *Penicillium chrysogenum* encoding Homocitrate Synthase. Gene 226: 51-59.
- Qian, J., West, A.H. and Cook, P.F. 2006. Acid-base chemical mechanism of Homocitrate Synthase from *Saccharomyces cerevisiae*. Biochemistry 45: 12136-12143.
- Kwon, E.S., Jeong, J.H. and Roe, J.H. 2006. Inactivation of Homocitrate Synthase causes lysine auxotrophy in copper/zinc-containing superoxide dismutase-deficient yeast *Schizosaccharomyces pombe*. J. Biol. Chem. 281: 1345-1351.

SOURCE

Homocitrate Synthase (31F5) is a mouse monoclonal antibody raised against nuclear protein preparations of yeast origin.

PRODUCT

Each vial contains 500 μI culture supernatant containing IgG_1 in PBS with <0.1% sodium azide.

APPLICATIONS

Homocitrate Synthase (31F5) is recommended for detection of two Homocitrate Synthase isozymes, Lys20p and Lys21p of *Saccharomyces cerevisiae* origin by Western Blotting (starting dilution to be determined by researcher, dilution range 1:100-1:5000), immunoprecipitation [10-20 µl per 100-500 µg of total protein (1 ml of cell lysate)] and immunofluorescence (starting dilution to be determined by researcher, dilution range 1:50-1:2500).

Molecular Weight of Homocitrate Synthase: 47 kDa.

Positive Controls: yeast cell extract.

DATA

Homocitrate Synthase (31F5): sc-5/832. Western blot analysis of Homocitrate Synthase expression in yeast cell extract.

STORAGE

For immediate and continuous use, store at 4° C for up to one month. For sporadic use, freeze in working aliquots in order to avoid repeated freeze/ thaw cycles. If turbidity is evident upon prolonged storage, clarify solution by centrifugation.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.