Na⁺/K⁺-ATPase β1 (464.8): sc-58626

The Power to Question

BACKGROUND

The ubiquitously expressed sodium/potassium-ATPase (Na+/K+-ATPase) exists as an oligomeric plasma membrane complex that couples the hydrolysis of one molecule of ATP to the importation of three Na+ ions and two K+ ions against their respective electrochemical gradients. As a member of the P-type family of ion motives, Na+/K+-ATPase plays a critical role in maintaining cellular volume, resting membrane potential and Na+-coupled solute transport. Multiple isoforms of three subunits, α , β and γ , comprise to form the Na+/K+-ATPase oligomer. The α subunit contains the binding sites for ATP and the cations; the glycosylated β subunit ensures correct folding and membrane insertion of the α subunits. The small γ subunit co-localizes with the α subunit in nephron segments, where it increases the affinity of Na+/K+-ATPase for ATP. The β subunit, but not the γ subunit, is essential for normal activity of Na+/K+-ATPase.

REFERENCES

- Hardwicke, P.M., et al. 1981. A proteolipid associated with Na+/K+-ATPase is not essential for ATPase activity. Biochem. Biophys. Res. Commun. 102: 250-257.
- 2. Ackermann, U., et al. 1990. Mutual dependence of Na+/K+-ATPase α and β subunits for correct posttranslational processing and intracellular transport. FEBS Lett. 269: 105-108.

CHROMOSOMAL LOCATION

Genetic locus: ATP1B1 (human) mapping to 1q24.2; Atp1b1 (mouse) mapping to 1 H2.2.

SOURCE

Na+/K+-ATPase β 1 (464.8) is a mouse monoclonal antibody raised against an external domain of the β 1 subunit of purified renal outer medulla of rabbit origin.

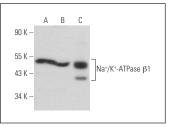
PRODUCT

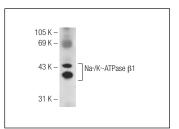
Each vial contains 200 $\mu g \; lgG_{2a}$ kappa light chain in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

APPLICATIONS

Na+/K+-ATPase β 1 (464.8) is recommended for detection of Na+/K+-ATPase β 1 of mouse, rat, human, rabbit, canine, bovine and porcine origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 μ g per 100-500 μ g of total protein (1 ml of cell lysate)] and immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500).

Suitable for use as control antibody for Na+/K+-ATPase $\beta1$ siRNA (h): sc-36008, Na+/K+-ATPase $\beta1$ siRNA (m): sc-36009, Na+/K+-ATPase $\beta1$ shRNA Plasmid (h): sc-36008-SH, Na+/K+-ATPase $\beta1$ shRNA Plasmid (m): sc-36009-SH, Na+/K+-ATPase $\beta1$ shRNA (h) Lentiviral Particles: sc-36008-V and Na+/K+-ATPase $\beta1$ shRNA (m) Lentiviral Particles: sc-36009-V.


Molecular Weight of Na+/K+-ATPase β1: 40-60 kDa.


Positive Controls: mouse brain extract: sc-2253, rat brain extract: sc-2392 or Caki-1 cell lysate: sc-2224.

RECOMMENDED SUPPORT REAGENTS

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz® Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunoprecipitation: use Protein A/G PLUS-Agarose: sc-2003 (0.5 ml agarose/2.0 ml). 3) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz® Mounting Medium: sc-24941 or UltraCruz® Hard-set Mounting Medium: sc-359850.

DATA

Na*/K*-ATPase β 1 (464.8): sc-58626. Western blot analysis of Na*/K*-ATPase β 1 expression in Caki-1 (A) and MOLT-4 (B) whole cell lysates and rat brain tissue extract (C).

Na⁺/K⁺-ATPase β 1 (464.8): sc-58626. Western blot analysis of Na⁺/K⁺-ATPase β 1 expression in mouse brain tissue extract.

SELECT PRODUCT CITATIONS

- Watanabe, Y., et al. 2008. Adherent monomer-misfolded SOD-1. PLoS ONE 3: e3497.
- Choi, H.J., et al. 2012. Patterns of gene and metabolite define the effects of extracellular osmolality on kidney collecting duct. J. Proteome Res. 11: 3816-3828.
- Chen, N.Y., et al. 2016. HIV-1 capsid is involved in post-nuclear entry steps. Retrovirology 13: 28.
- 4. Schwenzer, H., et al. 2019. Oxidative stress triggers selective tRNA retrograde transport in human cells during the integrated stress response. Cell Rep. 26: 3416-3428.e5.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com