Gcn5 (yE-19): sc-6304

The Power to Question

BACKGROUND

Chromatin remodeling, thought to be a critical component of transcriptional regulation, is effected by the acetylation of nucleosomal histones. Acetylation results in an allosteric change in the nucleosomal conformation and an increased accessibility of DNA to transcription factors. Conversely, the deacetylation of histones is associated with transcriptional silencing. Gcn5 (also designated Ada4) has been identified as a yeast histone acetylase. This protein forms a complex with Ada2 and Ada3 (also designated Ngg1) which facilitate transcriptional activation. Rpd3 (also designated Sdi2) and Hda1 have been identified as histone deacetylases. Sin3 (also designated Rpd1, Gam2, Ume4 or Sdi1) is involved in the transcriptional repression of many genes. This protein binds to Rpd3 and is thought to function by recruiting Rpd3 to specific promoters.

REFERENCES

- Marcus, G.A., et al. 1994. Functional similarity and physical association between Gcn5 and Ada2: putative transcriptional adaptors. EMBO J. 13: 4807-4815.
- Horiuchi, J., et al. 1995. ADA3, a putative transcriptional adaptor, consists
 of two separable domains and interacts with Ada2 and Gcn5 in a trimeric
 complex. Mol. Cell. Biol. 15: 1203-1209.
- 3. Carmen, A.C., et al. 1996. Hda1 and Hda3 are components of a yeast histone deacetylase (Hda) complex. J. Biol. Chem. 271: 15837-15844.
- Candau, R., et al. 1997. Histone acetyltransferase activity and interaction with Ada2 are critical for Gcn5 function in vivo. EMBO J. 16: 555-565.
- Kasten, M.M., et al. 1997. A large protein complex containing the yeast Sin3p and Rpd3p transcriptional regulators. Mol. Cell. Biol. 17: 4852-4858.
- Kadosh, D. and Struhl, K. 1997. Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89: 365-371.
- 7. Pennisi, E. 1997. Opening the way to gene activity. Science 275: 155-156.

SOURCE

Gcn5 (yE-19) is an affinity purified goat polyclonal antibody raised against a peptide mapping near the C-terminus of Gcn5 of $Saccharomyces\ cerevisiae$ origin.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-6304 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

APPLICATIONS

Gcn5 (yE-19) is recommended for detection of Gcn5 of *Saccharomyces cerevisiae* origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000).

Molecular Weight of Gcn5: 51 kDa.

RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use donkey anti-goat IgG-HRP: sc-2020 (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible donkey anti-goat IgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048.

SELECT PRODUCT CITATIONS

- 1. Sendra, R., et al. 2000. The yeast histone acetyltransferase A_2 complex, but not free Gcn5p, binds stably to nucleosomal arrays. J. Biol. Chem. 275: 24928-24934.
- Tur, G., et al. 2010. Factor binding and chromatin modification in the promoter of murine Egr1 gene upon induction. Cell. Mol. Life Sci. 67: 4065-4077
- Knutson, B.A. and Hahn, S. 2011. Domains of Tra1 important for activator recruitment and transcription coactivator functions of SAGA and NuA4 complexes. Mol. Cell. Biol. 31: 818-831.

RESEARCH USE

For research use only, not for use in diagnostic procedures

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com