## BACKGROUND

Protein tyrosine phosphatases, or PTPs, are type I transmembrane proteins, membrane associated proteins or proteins localized in nuclei. Examples of transmembrane PTPs are LAR, PTP $\alpha$, PTP $\beta$, PTP $\gamma$, PTPס, PTPع, PTP૬, PTPк and PTP $\mu$. Transmembrane PTPs play diverse roles during development and in adult tissues. Immunodepletion studies have suggested LAR to be a regulator of Insulin receptor phosphorylation. PTP $\alpha$ activity is increased twofold in response to phorbol ester stimulation, resulting in serine phosphorylation either directly or indirectly by members of the PKC family. Overexpression of v-H-Ras and Neu, but not Myc or Int2, in mammary tumors has been shown to induce PTPe expression. An alternative splicing event leads to a nervous tissue-specific chondroitin sulfate proteoglycan called phosphacan, which represents the amino-terminal portion of PTPל. РTРк and PTP $\mu$ share a conserved amino-terminal 160 amino acid MAM domain which facilitates homophilic binding. PTP $\mu$ localizes to points of cell contact and may be involved in regulating the assembly and disassembly of cadherin/catenin complexes in vivo.

## REFERENCES

1. Ahmad, F., et al. 1995. Increased abundance of the receptor-type proteintyrosine phosphatase LAR accounts for the elevated Insulin receptor dephosphorylating activity in adipose tissue of obese human subjects. J. Clin. Invest. 95: 2806-2812.
2. den Hertog, J., et al. 1995. Stimulation of receptor protein-tyrosine phosphatase $\alpha$ activity and phosphorylation by phorbol ester. Cell Growth Differ. 6: 303-307.
3. Brady-Kalnay, S.M., et al. 1995. Receptor protein tyrosine phosphatase PTP $\mu$ associates with cadherins and catenins in vivo. J. Cell Biol. 130: 977-986.
4. Zondag, G.C., et al. 1995. Homophilic interactions mediated by receptor tyrosine phosphatases $\mu$ and $\kappa$. A critical role for the novel extracellular MAM domain. J. Biol. Chem. 270: 14247-14250.

## CHROMOSOMAL LOCATION

Genetic locus: PTPRM (human) mapping to 18p11.23; Ptprm (mouse) mapping to 17 E1.1.

## SOURCE

$\mathrm{PTP} \mu$ (SBK10) is a mouse monoclonal antibody raised against amino acids 42-60 of PTP $\mu$ of human origin.

## PRODUCT

Each vial contains $200 \mu \mathrm{~g} \mathrm{lgG}_{1}$ kappa light chain in 1.0 ml of PBS with $<0.1 \%$ sodium azide and $0.1 \%$ gelatin.

## STORAGE

Store at $4^{\circ} \mathrm{C}$, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

## APPLICATIONS

PTP $\mu$ (SBK10) is recommended for detection of PTP $\mu$ of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) and immunoprecipitation [1-2 $\mu \mathrm{g}$ per 100-500 $\mu \mathrm{g}$ of total protein ( 1 ml of cell lysate)].
PTP (SBK10) is also recommended for detection of PTP $\mu$ in additional species, including bovine.

Suitable for use as control antibody for PTP $\mu$ siRNA (h): sc-44055, PTP $\mu$ siRNA (m): sc-45947, PTP $\mu$ shRNA Plasmid (h): sc-44055-SH, PTP $\mu$ shRNA Plasmid (m): sc-45947-SH, PTP $\mu$ shRNA (h) Lentiviral Particles: sc-44055-V and PTP $\mu$ shRNA (m) Lentiviral Particles: sc-45947-V.

Molecular Weight of PTP $\mu$ precursor: 200 kDa.
Molecular Weight of PTP $\mu$ subunits: 100 kDa .
Positive Controls: A549 cell lysate: sc-2413, SK-N-SH cell lysate: sc-2410 or T98G cell lysate: sc-2294.

## RECOMMENDED SUPPORT REAGENTS

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgGк BP-HRP: sc-516102 or m-lgGк BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz ${ }^{\circledR}$ Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunoprecipitation: use Protein A/G PLUS-Agarose: sc-2003 ( 0.5 ml agarose/2.0 ml).

## DATA



PTP $\mu$ (SBK10): sc-65228. Western blot analysis of PTP $\mu$ expression in SK-N-SH (A) and T98G (B) whole cell lysates.

## SELECT PRODUCT CITATIONS

1. Lee, S.W., et al. 2011 Angiopoietin-1 protects heart against ischemia/ reperfusion injury through VE-cadherin dephosphorylation and myocardiac integrin- $\beta 1 /$ ERK/caspase-9 phosphorylation cascade. Mol. Med. 17: 1095-1106.
2. Jiang, H., et al. 2015. Endothelial tyrosine kinase receptor B prevents VE-cadherin cleavage and protects against atherosclerotic lesion development in $\mathrm{ApoE}^{-/-}$mice. Oncotarget 6: 30640-30649.

## RESEARCH USE

For research use only, not for use in diagnostic procedures.

