Influenza A NP (1341): sc-65465

The Power to Question

BACKGROUND

Influenza A viruses are negative sense, single-stranded, segmented RNA viruses which are hosted by birds but may infect several species of mammals. All known subtypes are endemic in birds. Influenza A subtypes of are classified based on the combination of the virus coat glycoproteins hemagglutinin (HA) and neuraminidase (NA) subtypes. There are 16 different HA antigens (H1-H16) and nine different NA antigens (N1-N9) for Influenza A. The extent of infection into host organisms is determined by HA, which interacts with cell surface proteins containing oligosaccharides with terminal sialyl residues. Influenza A nucleoprotein (NP) associates with its RNA genome and is present in eight separate segments of ribonucleoprotein (RNP), each of which has to be present for successful replication.

REFERENCES

- Green, N., Alexander, H., Olson, A., Alexander, S., Shinnick, T.M., Sutcliffe, J.G. and Lerner, R.A. 1982. Immunogenic structure of the influenza virus hemagglutinin. Cell 28: 477-487.
- Gething, M.J., McCammon, K. and Sambrook, J. 1986. Expression of wildtype and mutant forms of influenza hemagglutinin: the role of folding in intracellular transport. Cell 46: 939-950.
- 3. Webster, R.G. and Rott, R. 1987. Influenza Virus A pathogenicity: the pivotal role of hemagglutinin. Cell 50: 665-666.
- 4. Wilson, I.A. and Cox, N.J. 1990. Structural basis of immune recognition of influenza virus hemagglutinin. Annu. Rev. Immunol. 8: 737-771.
- Skehel, J.J. and Wiley, D.C. 2000. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem. 69: 531-569.
- Huang, Q., Sivaramakrishna, R.P., Ludwig, K., Korte, T., Bottcher, C. and Herrmann, A. 2003. Early steps of the conformational change of influenza virus hemagglutinin to a fusion active state: stability and energetics of the hemagglutinin. Biochim. Biophys. Acta 1614: 3-13.
- 7. Takeda, M., Leser, G.P., Russell, C.J. and Lamb, R.A. 2003. Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion. Proc. Natl. Acad. Sci. USA 100: 14610-14617.
- Borrego-Diaz, E., Peeples, M.E., Markosyan, R.M., Melikyan, G.B. and Cohen, F.S. 2003. Completion of trimeric hairpin formation of influenza virus hemagglutinin promotes fusion pore opening and enlargement. Virology 316: 234-244.
- 9. Lau, W.L., Ege, D.S., Lear, J.D., Hammer, D.A. and DeGrado, W.F. 2004. Oligomerization of fusogenic peptides promotes membrane fusion by enhancing membrane destabilization. Biophys. J. 86: 272-284.

SOURCE

Influenza A NP (1341) is a mouse monoclonal antibody raised against purified Influenza A NP virions.

PRODUCT

Each vial contains 100 $\mu g \ lgG_{2a}$ kappa light chain in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

APPLICATIONS

Influenza A NP (1341) is recommended for detection of nucleoprotein (NP) of Influenza A Virus origin by immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500).

Molecular Weight of Influenza A NP: 56 kDa.

RECOMMENDED SUPPORT REAGENTS

To ensure optimal results, the following support reagents are recommended: 1) Immunofluorescence: use m-IgG κ BP-FITC: sc-516140 or m-IgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz® Mounting Medium: sc-24941 or UltraCruz® Hard-set Mounting Medium: sc-359850.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**