SANTA CRUZ BIOTECHNOLOGY, INC.

Integrin αM (M-19): sc-6614

BACKGROUND

Integrin α M (also designated complement component receptor 3 α chain, CD11b (p170), macrophage antigen α polypeptide, cell surface glycoprotein Mac-1 α subunit, CR3 α chain, MAC1A, M01A, ITGAM) is a cell adhesion molecule that acts as a receptor for cell surface ligands such as intracellular adhesion molecules (ICAMs) or soluble ligands. Integrins are heterodimeric proteins that contain an α chain and β chain. Integrin α M combines with Integrin β 2 to form a leukocyte-specific integrin referred to as macrophage receptor 1 (Mac-1) or inactivated-C3b (iC3b) receptor 3 (CR3). Integrin α M/ β 2 is important in the adherence of neutrophils and monocytes to stimulated endothelium, and also in the phagocytosis of complement coated particles.

REFERENCES

- 1. Nathan, C., et al. 1990. Tumor necrosis factor and CD11/CD18 (β 2) integrins act synergistically to lower cAMP in human neutrophils. J. Cell Biol. 111: 2171-2181.
- Li, R., et al. 1995. A peptide derived from the intercellular adhesion molecule-2 regulates the avidity of the leukocyte integrins CD11b/CD18 and CD11c/CD18. J. Cell Biol. 129: 1143-1153.
- Nueda, A., et al. 1995. Hematopoietic cell-type-dependent regulation of leukocyte integrin functional activity: CD11b and CD11c expression inhibits LFA-1-dependent aggregation of differentiatied U937 cells. Cell. Immunol. 164: 163-169.
- 4. Walzog, B., et al. 1995. The leukocyte integrin Mac-1 (CD11b/CD18) contributes to binding of human granulocytes to collagen. Exp. Cell Res. 218: 28-38.
- Schlecht, G., et al. 2004. Antigen targeting to CD11b allows efficient presentation of CD4+ and CD8+ T cell epitopes and *in vivo* Th1-polarized T cell priming. J. Immunol. 173: 6089-6097.

CHROMOSOMAL LOCATION

Genetic locus: Itgam (mouse) mapping to 7 F3.

SOURCE

Integrin αM (M-19) is an affinity purified goat polyclonal antibody raised against a peptide mapping at the C-terminus of Integrin αM of mouse origin.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-6614 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

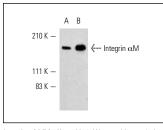
STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

APPLICATIONS


Integrin α M (M-19) is recommended for detection of Integrin α M of mouse and rat origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Suitable for use as control antibody for Integrin α M siRNA (m): sc-35693, Integrin α M shRNA Plasmid (m): sc-35693-SH and Integrin α M shRNA (m) Lentiviral Particles: sc-35693-V.

Molecular Weight of Integrin α M: 170 kDa.

Positive Controls: RAW 264.7 whole cell lysate: sc-2211 or LPS-treated RAW 264.7 whole cell lysate.

DATA

Integrin αM (M-19): sc-6614. Western blot analysis of Integrin αM (CD11 β) expression in whole cell lysates prepared from untreated (A) and phorbol ester and LPS-treated (B) RAW 264.7 cultures.

SELECT PRODUCT CITATIONS

- Xu, H., et al. 2001. Attenuation of hypoxia-ischemia-induced monocyte chemoattractant protein-1 expression in brain of neonatal mice deficient in interleukin-1 converting enzyme. Brain Res. Mol. Brain Res. 90: 57-67.
- 2. Hahn, P.Y., et al. 2003. *Pneumocystis carinii* cell wall β -glucan induces release of macrophage inflammatory protein-2 from alveolar epithelial cells via a lactosylceramide-mediated mechanism. J. Biol. Chem. 278: 2043-2050.
- 3. Mócsai, A., et al. 2004. The immunomodulatory adapter proteins DAP12 and Fc receptor γ -chain (FcRg) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc. Natl. Acad. Sci. USA 101: 6158-6163.
- 4. Wang, J.G., et al. 2006. Retinoic acid induces leukemia cell G₁ arrest and transition into differentiation by inhibiting cyclin-dependent kinase-activating kinase binding and phosphorylation of PML/RAR α . FASEB J. 20: 2142-2144.
- Makarenkova, V.P., et al. 2006. CD11b⁺/Gr-1⁺ myeloid suppressor cells cause T cell dysfunction after traumatic stress. J. Immunol. 176: 2085-2094.
- 6. Oliveira, L.A., et al. 2010. Expression of β 2 integrin (CD18) in embryonic mouse and chicken heart. Braz. J. Med. Biol. Res. 43: 25-35.