Hrk (N-20): sc-6972

The Power to Question

BACKGROUND

Members of the Bcl-2 family of proteins interact to regulate programmed cell death, or apoptosis. Various homodimers and heterodimers formed by proteins in this family can either promote or inhibit apoptosis. Bcl-2 blocks cell death following a variety of stimuli and confers a death-sparing effect on certain hematopoietic cell lines following growth factor withdrawal. Additional apoptotic inhibitors in this family include Bcl-x, Bcl-w, Mcl-1, Bag-1 and A1. Proapoptotic members of this family include Bax, Bad, Bak, NBK (Bik), BID and Hrk. Hrk (for harakiri), designated DP5 or neuronal death protein in mouse and rat, contains a BH3 domain with high homology to other Bcl-2 family members but lacks the conserved BH1 and BH2 domains. Physical interaction of Hrk with Bcl-2 or Bcl-x₁ inhibits the apoptotic activity of Hrk.

REFERENCES

- Vaux, D.L., et al. 1988. Bcl-2 promotes the survival of hemopoietic cells and cooperates with c-Myc to immortalize pre-B cells. Nature 335: 440-442.
- Nunez, G., et al. 1990. Deregulated Bcl-2 gene expression selectively prolongs survival of growth factor-deprived hemopoietic cell lines. J. Immunol. 144: 3602-3610.
- Oltvai, Z.N., et al. 1993. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74: 609-619.
- Sato, T., et al. 1994. Interactions among members of the Bcl-2 protein family analyzed with a yeast two-hybrid system. Proc. Natl. Acad. Sci. USA 91: 9238-9242.
- Oltvai, Z.N., et al. 1994. Checkpoints of dueling dimers foil death wishes. Cell 79: 189-192.
- Yang, E., et al. 1996. Molecular thanatopsis: a discourse on the Bcl-2 family and cell death. Blood 88: 386-401.
- 7. Wang, K., et al. 1996. BID: a novel BH3 domain-only death agonist. Genes Dev. 10: 2859-2869.
- 8. Nagata, S. 1997. Apoptosis by death factor. Cell 88: 355-365.
- 9. Inohara, N., et al. 1997. Harakiri, a novel regulator of cell death, encodes a protein that activates apoptosis and interacts selectively with survival-promoting proteins Bcl-2 and Bcl-x_l. EMBO J. 16: 1686-1694.

CHROMOSOMAL LOCATION

Genetic locus: HRK (human) mapping to 12q24.22; Bid3 (mouse) mapping to 5 F.

SOURCE

Hrk (N-20) is an affinity purified goat polyclonal antibody raised against a peptide mapping at the N-terminus of Hrk of human origin.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-6972 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

APPLICATIONS

Hrk (N-20) is recommended for detection of Hrk of human and, to a lesser extent, mouse and rat origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Hrk (N-20) is also recommended for detection of Hrk in additional species, including canine, bovine and porcine.

Suitable for use as control antibody for Hrk siRNA (h): sc-37303, Hrk siRNA (m): sc-37304, Hrk shRNA Plasmid (h): sc-37303-SH, Hrk shRNA Plasmid (m): sc-37304-SH, Hrk shRNA (h) Lentiviral Particles: sc-37303-V and Hrk shRNA (m) Lentiviral Particles: sc-37304-V.

RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use donkey anti-goat IgG-HRP: sc-2020 (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible donkey anti-goat IgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use donkey anti-goat IgG-FITC: sc-2024 (dilution range: 1:100-1:400) or donkey anti-goat IgG-TR: sc-2783 (dilution range: 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941.

SELECT PRODUCT CITATIONS

- 1. Jurisicova, A., et al. 2003. Expression of apoptosis-related genes during human preimplantation embryo development: potential roles for the harakiri gene product and caspase-3 in blastomere fragmentation. Mol. Hum. Reprod. 9: 133-141.
- 2. Jurisicova, A., et al. 2007. Maternal exposure to polycyclic aromatic hydrocarbons diminishes murine ovarian reserve via induction of Harakiri. J. Clin. Invest. 117: 3971-3978.
- 3. Fowler, P.A., et al. 2014. *In utero* exposure to cigarette smoke dysregulates human fetal ovarian developmental signalling. Hum. Reprod. 29: 1471-1489.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com