CD3 (2Q1160): sc-70621

The Power to Question

BACKGROUND

The T cell antigen receptor (TCR) recognizes foreign antigens and translates such recognition events into intracellular signals that elicit a change in the cell from a dormant to an activated state. Much of this signaling process can be attributed to a multi-subunit complex of proteins that associates directly with the TCR. This complex has been designated CD3 (cluster of differentiation 3). It is composed of five invariant polypeptide chains that associate to form three dimers: a heterodimer of gamma and epsilon chains $(\gamma\epsilon)$, a heterodimer of delta and epsilon chains $(\delta\epsilon)$ and a homodimer of two zeta chains ($\zeta \zeta$) or a heterodimer of zeta and eta chains ($\zeta \eta$). The ζ and η chains are encoded by the same gene but differ in their carboxyl-terminal ends due to an alternative splicing event. The γ , ϵ and δ chains each contain a single copy of a conserved immunoreceptor tyrosine-based activation motif (ITAM). In contrast, the ζ chain contains three consecutive copies of the same motif. Phosphorylated ITAMs act as docking sites for protein kinases such as ZAP-70 and Syk and are also capable of regulating their kinase activity. The crystal structure of the ZAP-70 SH2 domains bound to the ζ chain ITAMs has been solved.

REFERENCES

- 1. Exley, M., et al. 1991. Structure, assembly and intracellular transport of the T cell receptor for antigen. Semin. Immunol. 3: 283-297.
- 2. Weiss, A., et al. 1991. Signal transduction by the T cell antigen receptor. Semin. Immunol. 3: 313-324.
- Chan, A.C., et al. 1994. The role of protein tyrosine kinases and protein tyrosine phosphatases in cell antigen receptor signal transduction. Semin. Immunol. 12: 555-592.
- Aoe, T., et al. 1994. Different cytoplasmic structure of the CD3-ζ family dimer modulates the activation signal and function of T cells. Int. Immunol. 6: 1671-1679.
- Ohno, H., et al. 1994. Targeted disruption of the CD3-η locus causes high lethality in mice: modulation of Oct-1 transcription on the opposite strand. EMBO J. 13: 1157-1165.
- 6. Neumeister, E.N., et al. 1995. Binding of ZAP-70 to phosphorylated T cell receptor ζ and ϵ enhances its autophosphorylation and generates specific binding sites for SH2 domain-containing proteins. Mol. Cell. Biol. 15: 3171-3178.
- 7. Weiss, A. 1995. Zapping tandem SH2 domains. Nature 377: 17-18.
- 8. Hatada, M.H., et al. 1995. Molecular basis for interaction of the protein tyrosine kinase ZAP-70 with the T cell receptor. Nature 377: 32-38.

CHROMOSOMAL LOCATION

Genetic locus: CD3D (human) mapping to 11q23.3.

SOURCE

CD3 (2Q1160) is a mouse monoclonal antibody raised against peripheral T lymphocytes of human origin.

PRODUCT

Each vial contains 100 $\mu g \; lg G_{2a}$ in 1.0 ml PBS with < 0.1% sodium azide and 0.1% gelatin.

APPLICATIONS

CD3 (201160) is recommended for detection of CD3 of human origin by solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Suitable for use as control antibody for CD3 siRNA (h): sc-29987, CD3 shRNA Plasmid (h): sc-29987-SH and CD3 shRNA (h) Lentiviral Particles: sc-29987-V.

Molecular Weight of CD3: 25 kDa.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

See **CD3 (PC3/188A): sc-20047** for CD3 antibody conjugates, including AC, HRP, FITC, PE, Alexa Fluor[®] 488 and Alexa Fluor[®] 647.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com