SANTA CRUZ BIOTECHNOLOGY, INC.

ΙκΒ-ε (M-121): sc-7156

BACKGROUND

On the basis of both functional and structural considerations, members of the IkB family of proteins can be divided into four groups. The first of these groups, IkB- α , includes the avian protein pp40 and the mammalian MAD-3, both of which inhibit binding of p50-p65 NFkB complex or Rel protein to their cognate binding sites but do not inhibit the binding of p50 homodimer to kB sites, suggesting that the IkB- α family binds to the p65 subunit of p50-p65 heterocomplex through ankyrin repeats. The second member of the IkB family is represented by a protein designated IkB- β . The third group of IkB proteins is represented by IkB- γ , which is identical in sequence with the C-terminal domain of the p110 precursor of NFkB p50 and is expressed predominantly in lymphoid cells. An additional IkB family member, IkB- ϵ , has several phosphorylated forms and is primarily found complexed with ReI A and/or c-ReI.

CHROMOSOMAL LOCATION

Genetic locus: NFKBIE (human) mapping to 6p21.1; Nfkbie (mouse) mapping to 17 B3.

SOURCE

IκB-ε (M-121) is a rabbit polyclonal antibody raised against amino acids 1-121 of IκB-ε of mouse origin.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

APPLICATIONS

IκB-ε (M-121) is recommended for detection of IκB-ε of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 μg per 100-500 μg of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500), immunohistochemistry (including paraffin-embedded sections) (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Suitable for use as control antibody for $I\kappa$ B- ϵ siRNA (h): sc-35642, $I\kappa$ B- ϵ siRNA (m): sc-35643, $I\kappa$ B- ϵ shRNA Plasmid (h): sc-35642-SH, $I\kappa$ B- ϵ shRNA Plasmid (m): sc-35643-SH, $I\kappa$ B- ϵ shRNA (h) Lentiviral Particles: sc-35642-V and $I\kappa$ B- ϵ shRNA (m) Lentiviral Particles: sc-35643-V.

Molecular Weight of IkB-E: 51 kDa.

Positive Controls: $I\kappa$ B- ϵ (m): 293T Lysate: sc-120929, THP-1 cell lysate: sc-2238 or WEHI-231 whole cell lysate: sc-2213.

STORAGE

Store at 4° C, **D0 NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

DATA

formalin fixed, paraffin-embedded human thyroid gland

tissue showing nuclear and cytoplasmic staining of

$$\begin{split} & |\kappa B{-}\epsilon \; (M{-}121); \; sc{-}7156. \; Western \; blot\; analysis\; of \\ & |\kappa B{-}\epsilon \; expression\; in\; non-transfected: \; sc{-}117752 \; (\textbf{A}) \\ & and\; mouse\; |\kappa B{-}\epsilon \; transfected: \; sc{-}120929 \; (\textbf{B}) \; 293T \\ & whole\; cell\; lysates. \end{split}$$

SELECT PRODUCT CITATIONS

1. Simeonidis, S., et al. 1999. Mechanisms by which $I\kappa B$ proteins control NF κB activity. Proc. Natl. Acad. Sci. USA 96: 49-54.

glandular cells

- 2. Cabannes, E., et al. 1999. Mutations in the $l\kappa$ B- α gene in Hodgkin's disease suggest a tumour suppressor role for $l\kappa$ B- α . Oncogene 18: 3063-3070.
- 3. Nasuhara, Y., et al. 1999. Differential I κ B kinase activation and I κ B- α degradation by interleukin-1 β and tumor necrosis factor α in human U-937 monocytic cells. J. Biol. Chem. 274: 19965-19972.
- Solan, N., et al. 2002. RelB cellular regulation and transcriptional activity are regulated by p100. J. Biol. Chem. 277: 1405-1418.
- 5. Goudeau, B., et al. 2003. $|\kappa B\alpha/|\kappa B\epsilon$ deficiency reveals that a critical NF κ B dosage is required for lymphocyte survival. Proc. Natl. Acad. Sci. USA 100: 15800-15805.
- 6. Li, Y., et al. 2005. Role for protein kinase C (PKC) in TCR/CD28-mediated signaling through the canonical but not the non-canonical pathway for NF κ B activation. J. Biol. Chem. 280: 1217-1223.
- Sen, P., et al. 2007. Apoptotic cells induce Mer tyrosine kinase-dependent blockade of NFκB activation in dendritic cells. Blood 109: 653-660.
- 8. Hansberger, M.W., et al. 2007. I κ B kinase subunits α and γ are required for activation of NF κ B and induction of apoptosis by mammalian reovirus. J. Virol. 81: 1360-1371.
- Haldar, A.K., et al. 2010. *Leishmania donovani* isolates with antimonyresistant but not -sensitive phenotype inhibit sodium antimony gluconateinduced dendritic cell activation. PLoS Pathog. 6: e1000907.

MONOS Satisfation Guaranteed

Try $\mathbf{kB-\epsilon}$ (G-4): sc-7275 or $\mathbf{kB-\epsilon}$ (E-9): sc-374188, our highly recommended monoclonal alternatives to $\mathbf{kB-\epsilon}$ (M-121).