SANTA CRUZ BIOTECHNOLOGY, INC.

GABA_A Rβ1 (N-19): sc-7361

BACKGROUND

GAD-65 and GAD-67, glutamate decarboxylases function to catalyze the production of GABA (γ -aminobutyric acid). In the central nervous system GABA functions as the main inhibitory transmitter by increasing a Cl-conductance that inhibits neuronal firing. GABA has been shown to activate both ionotropic (GABA_A) and metabotropic (GABA_B) receptors as well as a third class of receptors called GABA_C. Both GABA_A and GABA_C are ligand-gated ion channels, however, they are structurally and functionally distinct. Members of the GABA_A receptor family include GABA_A R α 1-6, GABA_A R β 1-3, GABA_A R γ 1-3, GABA_A R δ , GABA_A R ϵ , GABA_A R ρ 1 and GABA_A R ρ 2. The GABA_B family is composed of GABA_B R1 α and GABA_B R1 β . GABA transporters have also been identified and include GABA transporters function to terminate GABA action.

CHROMOSOMAL LOCATION

Genetic locus: GABRB1 (human) mapping to 4p12; Gabrb1 (mouse) mapping to 5 C3.2.

SOURCE

GABA_A R β 1 (N-19) is an affinity purified goat polyclonal antibody raised against a peptide mapping at the N-terminus of GABA_A R β 1 of human origin.

PRODUCT

Each vial contains 200 μg IgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-7361 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

APPLICATIONS

GABA_A R β 1 (N-19) is recommended for detection of GABA_A R β 1 of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500), immunohistochemistry (including paraffin-embedded sections) (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

 GABA_A RB1 (N-19) is also recommended for detection of GABA_A RB1 in additional species, including bovine and porcine.

Suitable for use as control antibody for GABA_A R β 1 siRNA (h): sc-42437, GABA_A R β 1 siRNA (m): sc-42438, GABA_A R β 1 shRNA Plasmid (h): sc-42437-SH, GABA_A R β 1 shRNA Plasmid (m): sc-42438-SH, GABA_A R β 1 shRNA (h) Lentiviral Particles: sc-42437-V and GABA_A R β 1 shRNA (m) Lentiviral Particles: sc-42438-V.

Molecular Weight of GABA_A Rβ1: 59 kDa.

Positive Controls: mouse brain extract: sc-2253, rat brain extract: sc-2392 or mouse cerebellum extract: sc-2403.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

DATA

GABA_A R β 1 (N-19): sc-7361. Immunoperoxidase staining of formalin fixed, paraffin-embedded human pancreas tissue showing cytoplasmic staining of lslets of Langerhans.

SELECT PRODUCT CITATIONS

- 1. Russek, S.J., et al. 2000. An initiator element mediates autologous downregulation of the human type A GABA_A R β 1 subunit gene. Proc. Natl. Acad. Sci. USA 97: 8600-8605.
- 2. Donzelli, M., et al. 2002. Dual mode of degradation of Cdc25 A phospha-tase. EMBO J. 21: 4875-4884.
- Stewart, R.R., et al. 2002. Neural progenitor cells of the neonatal rat anterior subventricular zone express functional GABA_A receptors. J. Neurobiol. 50: 305-322.
- 4. Griffiths, J., et al. 2005. Withdrawal from progesterone increases expression of α 4, β 1, and δ GABA_A receptor subunits in neurons in the periaqueductal gray matter in female Wistar rats. J. Comp. Neurol. 486: 89-97.
- Lovick, T.A., et al. 2005. Changes in GABA_A receptor subunit expression in the midbrain during the oestrous cycle in Wistar rats. Neuroscience 131: 397-405.
- 6. Griffiths, J.L., et al. 2005. GABAergic neurones in the rat periaqueductal grey matter express $\alpha 4$, $\beta 1$ and δ GABA_A receptor subunits: plasticity of expression during the estrous cycle. Neuroscience 136: 457-466.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.