TBP (A-6): sc-74595

The Power to Question

BACKGROUND

In eukaryotic systems, initiation of transcription from protein-coding genes is a complex process requiring RNA polymerase II and broad families of auxiliary transcription factors. Such factors can be divided into two major functional classes: the basal factors that are required for transcription of all Pol II genes, including TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH; and sequence-specific factors that regulate gene expression. The basal transcription factors and Pol II form a specific multiprotein complex near the transcription start site by interacting with core promotor elements such as the TATA box generally located 25-30 base pairs upstream of the transcription start site. Binding of TFIID to the TATA element initiates assembly of the other factors into a preinitiation complex. The TATA-binding subunit of TFIID (designated TFIIDt or TBP) from higher eukaryotes contains a highly conserved 180 amino acid C-terminal domain.

REFERENCES

- Maldonado, E., Ha, I., Cortes, P., Weis, L. and Reinberg, D. 1990. Factors involved in specific transcription by mammalian RNA polymerase II: role of transcription factors IIA, IID, and IIB during formation of a transcriptioncompetent complex. Mol. Cell. Biol. 10: 6335-6347.
- Peterson, M.G., Inostroza, J., Maxon, M.E., Flores, O., Admon, A., Reinberg, D. and Tjian, R. 1991. Structure and functional properties of human general transcription factor IIE. Nature 354: 369-373.
- 3. Lee, D.K., Dejong, J., Hashimoto, S., Horikoshi, M. and Roeder, R.G. 1992. TFIIA induces conformational changes in TFIID via interactions with the basic repeat. Mol. Cell. Biol. 12: 5189-5196.
- Takada, R., Nakatani, Y., Hoffmann, A., Kokubo, T., Hasegawa, S., Roeder, R.G. and Horikoshi, M. 1992. Identification of human TFIID components and direct interaction between a 250-kDa polypeptide and the TATA boxbinding protein (TFIIDt). Proc. Natl. Acad. Sci. USA 89: 11809-11813.

SOURCE

TBP (A-6) is a mouse monoclonal antibody raised against amino acids 1-240 representing full length TBP of *Saccharomyces cerevisiae* origin.

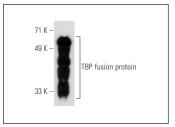
PRODUCT

Each vial contains 200 $\mu g \ lgG_{2b}$ kappa light chain in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

APPLICATIONS


TBP (A-6) is recommended for detection of TBP of *Saccharomyces cerevisiae* origin by Western Blotting (starting dilution 1:100, dilution range 1:100-1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Molecular Weight of TBP: 38 kDa.

RECOMMENDED SUPPORT REAGENTS

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz® Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunoprecipitation: use Protein A/G PLUS-Agarose: sc-2003 (0.5 ml agarose/2.0 ml). 3) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz® Mounting Medium: sc-24941 or UltraCruz® Hard-set Mounting Medium: sc-359850.

DATA

TBP (A-6): sc-74595. Western blot analysis of yeast recombinant TBP fusion protein.

SELECT PRODUCT CITATIONS

- 1. Ryu, M.J. and Chung, H.S. 2016. Fucoidan reduces oxidative stress by regulating the gene expression of HO-1 and SOD-1 through the Nrf2/ERK signaling pathway in HaCaT cells. Mol. Med. Rep. 14: 3255-3260.
- Yu, Y., Shen, Q., Lai, Y., Park, S.Y., Ou, X., Lin, D., Jin, M. and Zhang, W. 2018. Anti-inflammatory effects of curcumin in microglial cells. Front. Pharmacol. 9: 386.
- Jin, M., Park, S.Y., Shen, Q., Lai, Y., Ou, X., Mao, Z., Lin, D., Yu, Y. and Zhang, W. 2018. Anti-neuroinflammatory effect of curcumin on Pam3CSK4stimulated microglial cells. Int. J. Mol. Med. 41: 521-530.
- Seidu, T., McWhorter, P., Myer, J., Alamgir, R., Eregha, N., Bogle, D., Lofton, T., Ecelbarger, C. and Andrisse, S. 2021. DHT causes liver steatosis via transcriptional regulation of SCAP in normal weight female mice. J. Endocrinol. 250: 49-65.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com