VMAT 2 (N-19): sc-7722

The Power to Question

BACKGROUND

Neurotransmission depends on the regulated exocytotic release of chemical transmitter molecules. This requires the packaging of these substances into the specialized secretory vesicles of neurons and neuroendocrine cells, a process mediated by specific vesicular transporters. The family of genes encoding the vesicular transporters of monoamines (VMAT 1 and VMAT 2) and acetylcholine (VACht) have been cloned and functionally characterized. The sequence of these integral membrane proteins predicts twelve transmembrane domains and weak homology to a class of bacterial antibiotic resistance proteins. The vesicular transport of neurotransmitter molecules has been shown to be an active ATP- and proton dependent transport mechanism.

REFERENCES

- Roghani, A., et al. 1994. Molecular cloning of a putative vesicular transporter for acetylcholine. Proc. Natl. Acad. Sci. USA 91: 10620-10624.
- Henry, J.P., et al. 1994. Biochemistry and molecular biology of the vesicular monoamine transporter from chromaffin granules. J. Exp. Biol. 196: 251-262.
- 3. Haigh, J.R., et al. 1994. Acetylcholine active transport by rat brain synaptic vesicles. Neuroreport 5: 773-776.
- Yelin, R., et al. 1995. The pharmacological profile of the vesicular monoamine transporter resembles that of multidrug transporters. FEBS Lett. 377: 201-207.
- 5. Varoqui, H., et al. 1996. Active transport of acetylcholine by the human vesicular acetylcholine transporter. J. Biol. Chem. 271: 27229-27232.
- Varoqui, H., et al. 1997. Vesicular neurotransmitter transporters. Potential sites for the regulation of synaptic function. Mol. Neurobiol. 15: 165-191.
- Reimer, R.J., et al. 1998. Vesicular neurotransmitter transport and the presynaptic regulation of quantal size. Curr. Opin. Neurobiol. 8: 405-412.

CHROMOSOMAL LOCATION

Genetic locus: SLC18A2 (human) mapping to 10q25.3.

SOURCE

VMAT 2 (N-19) is an affinity purified goat polyclonal antibody raised against a peptide mapping near the N-terminus of VMAT 2 of human origin.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

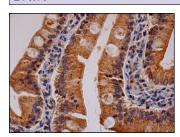
Blocking peptide available for competition studies, sc-7722 P, (100 µg peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

APPLICATIONS

VMAT 2 (N-19) is recommended for detection of VMAT 2 of human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500), immunohistochemistry (including paraffin-embedded sections) (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).


Suitable for use as control antibody for VMAT 2 siRNA (h): sc-36824, VMAT 2 shRNA Plasmid (h): sc-36824-SH and VMAT 2 shRNA (h) Lentiviral Particles: sc-36824-V.

Molecular Weight of VMAT 2: 63 kDa.

RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use donkey anti-goat IgG-HRP: sc-2020 (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible donkey anti-goat IgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use donkey anti-goat IgG-FITC: sc-2024 (dilution range: 1:100-1:400) or donkey anti-goat IgG-TR: sc-2783 (dilution range: 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941. 3) Immunohistochemistry: use ImmunoCruz™: sc-2053 or ABC: sc-2023 goat IgG Staining Systems.

DATA

VMAT 2 (N-19): sc7722. Immunoperoxidase staining of formalin fixed, paraffin-embedded human duodenum tissue showing cytoplasmic staining of glandular cells.

SELECT PRODUCT CITATIONS

1. Lohoff, F.W., et al. 2006. Variations in the vesicular monoamine transporter 1 gene (VMAT 1/SLC18A1) are associated with bipolar i disorder. Neuropsychopharmacology 31: 2739-2747.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

Try VMAT 2 (H-12): sc-374079 or VMAT 2 (D-4): sc-390285, our highly recommended monoclonal aternatives to VMAT 2 (N-19).