SANTA CRUZ BIOTECHNOLOGY, INC.

FGF-2 (H-131): sc-7911

BACKGROUND

Fibroblast growth factor-1 (FGF-1), also designated acidic FGF, and fibroblast growth factor-2 (FGF-2), also designated basic FGF, are members of a family of growth factors that stimulate proliferation of cells of mesenchymal, epithelial and neuroectodermal origin. Additional members of the FGF family include the oncogenes FGF-3 (Int2) and FGF-4 (HST/Kaposi), FGF-5, FGF-6, FGF-7 (KGF), FGF-8 (AIGF), FGF-9 (GAF) and FGF-10. Members of the FGF family share 30-55% amino acid sequence identity, similar gene structure and are capable of transforming cultured cells when overexpressed in transfected cells. Cellular receptors for FGFs are members of a second multigene family including four tyrosine kinases, designated FIg (FGFR-1), Bek (FGFR-L), TKF and FGFR-3.

CHROMOSOMAL LOCATION

Genetic locus: FGF2 (human) mapping to 4q27; Fgf2 (mouse) mapping to 3 B.

SOURCE

FGF-2 (H-131) is a rabbit polyclonal antibody raised against amino acids 10-140 of FGF-2 of human origin.

PRODUCT

Each vial contains 200 μg IgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

APPLICATIONS

FGF-2 (H-131) is recommended for detection of precursor and mature FGF-2 of mouse, rat, human and *Xenopus laevis* origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 μ g per 100-500 μ g of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500), immunohistochemistry (including paraffin-embedded sections) (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:3000).

FGF-2 (H-131) is also recommended for detection of precursor and mature FGF-2 in additional species, including equine, canine, bovine and avian.

Suitable for use as control antibody for FGF-2 siRNA (h): sc-39446, FGF-2 siRNA (m): sc-39447, FGF-2 shRNA Plasmid (h): sc-39446-SH, FGF-2 shRNA Plasmid (m): sc-39447-SH, FGF-2 shRNA (h) Lentiviral Particles: sc-39446-V and FGF-2 shRNA (m) Lentiviral Particles: sc-39447-V.

Molecular Weight of FGF-2 isoforms: 18/21/24 kDa.

Positive Controls: HeLa whole cell lysate: sc-2200.

STORAGE

Store at 4° C, **D0 NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

DATA

FGF-2 (H-131): sc-7911. Western blot analysis of recombinant human FGF-2.

FGF-2 (H-131): sc-7911. Immunoperoxidase staining of formalin fixed, paraffin-embedded human brain tissue showing cytoplasmic staining of neuronal cells.

SELECT PRODUCT CITATONS

- Riedel, F., et al. 2005. Immunohistochemical analysis of radiation-induced non-healing dermal wounds of the head and neck. *In Vivo* 19: 343-350.
- Pollio, F., et al. 2006. Uterine dehiscence in term pregnant patients with one previous cesarean delivery: growth factor immunoexpression and collagen content in the scarred lower uterine segment. Am. J. Obstet. Gynecol. 194: 527-534.
- 3. Chun, S.Y., et al. 2007. Identification and characterization of bioactive factors in bladder submucosa matrix. Biomaterials 28: 4251-4256.
- 4. Weiner, L., et al. 2007. Dedicated epithelial recipient cells determine pigmentation patterns. Cell 130: 932-942.
- 5. Kang, H., et al. 2007. Semaphorin 7A plays a critical role in TGFβ1-induced pulmonary fibrosis. J. Exp. Med. 204: 1083-1093.
- Porter, D., et al. 2007. The cardioprotective effect of the low molecular weight isoform of fibroblast growth factor-2: the role of JNK signaling. J. Mol. Cell. Cardiol. 42: 106-120.
- Dahia, C.L., et al. 2009. Intercellular signaling pathways active during intervertebral disc growth, differentiation, and aging. Spine 34: 456-462.
- Nie, C., et al. 2011. Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell Transplant. 20: 205-216.
- Didangelos, A., et al. 2012. Novel role of ADAMTS-5 protein in proteoglycan turnover and lipoprotein retention in atherosclerosis. J. Biol. Chem. 287: 19341-19345.

Try FGF-2 (G-2): sc-365106 or FGF-2 (C-2): sc-74412, our highly recommended monoclonal alternatives to FGF-2 (H-131). Also, for AC, HRP, FITC, PE, Alexa Fluor[®] 488 and Alexa Fluor[®] 647 conjugates, see FGF-2 (G-2): sc-365106.