NT-3 (J1407): sc-80250

The Power to Question

BACKGROUND

Neurotrophins function to regulate naturally occurring cell death of neurons during development. The prototype neurotrophin is nerve growth factor (NGF), originally discovered in the 1950s as a soluble peptide promoting the survival of, and neurite outgrowth from, sympathetic ganglia. Three additional structurally homologous neurotrophic factors have been identified. These include brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4) (also designated NT-5). These various neurotrophins stimulate the *in vitro* survival of distinct, but partially overlapping, populations of neurons. The cell surface receptors through which neurotrophins mediate their activity have been identified. For instance, the Trk A receptor is the preferential receptor for NGF, but also binds NT-3 and NT-4. The Trk B receptor binds both BDNF and NT-4 equally well, and binds NT-3 to a lesser extent, while the Trk C receptor only binds NT-3.

REFERENCES

- Oppenheim, R.W. 1991. Cell death during development of the nervous system. Annu. Rev. Neurosci. 14: 453-501.
- Thoenen, H. 1991. The changing scene of neurotrophic factors. Trends Neurosci. 14: 165-170.
- Chao, K.K., Cheung, E., Armstrong, W.B. and Wong, B.J. 1992. Neurotrophin receptors: a window into neuronal differentiation. Neuron 9: 583-593.
- Korsching, S. 1993. The neurotrophic factor concept: a reexamination.
 J. Neurosci. 13: 2739-2748.
- Ip, N.Y., Stitt, T.N., Tapley, P., Klein, R., Glass, D.J., Fandl, J., Greene, L.A., Barbacid, M. and Yancopoulos, G.D. 1993. Similarities and differences in the way neurotrophins interact with the Trk receptors in neuronal and nonneuronal cells. Neuron 10: 137-149.
- Klein, R. 1994. Role of neurotrophins in mouse neuronal development. FASEB J. 8: 738-744.
- 7. Gotz, R. and Schartl, M. 1994. The conservation of neurotrophic factors during vertebrate evolution. Comp. Biochem. Physiol. 108: 1-10.

CHROMOSOMAL LOCATION

Genetic locus: NTF3 (human) mapping to 12p13.31.

SOURCE

NT-3 (J1407) is a mouse monoclonal antibody raised against amino acids 139-257 of NT-3 of human origin.

PRODUCT

Each vial contains 100 μ g lgG₁ kappa light chain in 1.0 ml of PBS with < 0.1% sodium azide and protein stabilizer. Also available azide-free for neutralization, sc-80250 L, 200 μ g/0.1 ml.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

APPLICATIONS

NT-3 (J1407) is recommended for detection of NT-3 of human origin by solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Suitable for use as control antibody for NT-3 siRNA (h): sc-42125, NT-3 shRNA Plasmid (h): sc-42125-SH and NT-3 shRNA (h) Lentiviral Particles: sc-42125-V.

Molecular Weight of NT-3: 35 kDa.

SELECT PRODUCT CITATIONS

 Micera, A., Jirsova, K., Esposito, G., Balzamino, B.O., Di Zazzo, A. and Bonini, S. 2020. Mast cells populate the corneoscleral limbus: new insights for our understanding of limbal microenvironment. Invest. Ophthalmol. Vis. Sci. 61: 43.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com