SANTA CRUZ BIOTECHNOLOGY, INC.

Aspergillus (343/31): sc-80690

BURGAN ALBOY

BACKGROUND

Aspergillus represents a genus of around 200 filamentous fungi made of chains of cells, called hyphae. All Aspergillus species are highly aerobic and grow in oxygen-rich environments worldwide. Most other fungi are usually found growing on carbon-rich surfaces, but Aspergilli can also secrete amylase enzymes, which allow it to use polysaccharides e.g. starch as a carbon source. Several species of Aspergillus also demonstrate oligotrophy, so they are able to grow in environments containing low amounts of nutrients, or even environments in which there is a complete lack of key nutrients. Some Aspergillus species can be pathogenic to humans as well as many grain crops. A. niger, a species of Aspergillus, is as the major source of citric acid, and it accounts for over 99% of global citric acid production in the world.

REFERENCES

- Raistrick, H. and Clark, A.B. 1919. On the mechanism of oxalic acid formation by *Aspergillus niger*. Report to the Medical Research Committee. Biochem J. 13: 329-344.
- Banerjee, B. and Kurup, V.P. 2002. Molecular biology of Aspergillus allergens. Front. Biosci. 128-139.
- 3. Jernejc, K. and Legisa, M. 2002. The influence of metal ions on malic enzyme act *Aspergillus niger*. FEMS Microbiol Lett. 217: 185-190.
- 4. Singh, B.P., Banerjee, B. and Kurup, V.P. 2002. *Aspergillus* antigens associated with allergic bronchopulmonary *aspergillosis*. Front. Biosci. 102-109.
- Liang, D.C., Zuo, A.J., Guo, G. and Zhang, J.Y. 2005. Cloning and expression of an *Aspergillus fumigatus* chitosanase gene. Wei Sheng Wu Xue Bao 45: 539-542.
- 6. Matsumura, K., Obata, H., Hata, Y., Kawato, A., Abe, Y. and Akita, 0. 2005. Isolation and characterization of a novel gene encoding α -L-arabinofuranosidase from *Aspergillus* oryzae. J. Biosci. Bioeng. 98: 77-84.
- Thiagarajan, S., Jeya, M. and Gunasekaran, P. 2005. Improvement of xylanase production in solid state fermentation by alkali-tolerant Aspergillus fumigatus MKU1 using a fractional factorial design. Indian J. Exp. Biol. 43: 887-891.
- 8. Martin, J.A., Murphy, R.A. and Power, R.F. 2006. Purification and physicochemical characterisation of genetically modified phytases expressed in *Aspergillus awamori*. Bioresour. Technol. 97: 1703-1708.
- Stark, H., Roponen, M., Purokivi, M., Randell, J., Tukiainen, H. and Hirvonen, MR. 2006. Aspergillus fumigatus challenge increases cytokine levels in nasal lavage fluid. Inhal. Toxicol. 18: 1033-1039.

SOURCE

Aspergillus (343/31) is a mouse monoclonal antibody raised against native Aspergillus.

PRODUCT

Each vial contains 100 μg IgM in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

APPLICATIONS

Aspergillus (343/31) is recommended for detection of Aspergillus of Aspergillus origin by immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Immunofluorescence: use goat anti-mouse IgM-FITC: sc-2082 (dilution range: 1:100-1:400) or goat anti-mouse IgM-TR: sc-2983 (dilution range: 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**