SANTA CRUZ BIOTECHNOLOGY, INC.

Dok-2 (M-20): sc-8131

BACKGROUND

Dok-1 associates with the Ras GTPase activating protein (Ras GAP) upon tyrosine phosphorylation. Evidence suggests that p62 Dok-1 is a substrate of the constitutive tyrosine kinase activity of p210 Bcr-Abl, a fusion protein caused by the t(9;22) translocation and associated with chronic myelogenous leukemia. Dok-1, as well as the tyrosine kinase substrates IRS-1 and Cas, is a member of a class of "docking" proteins which contain multiple tyrosine residues and putative SH2 binding sites. Dok-1 is suspected to be the substrate phosphorylated in response to stimulation by a number of growth factors, including PDGF, VEGF, Insulin and IGF. Dok-2 (also designated p56 Dok) has also been identified as a potential mediator of the effects of p210 Bcr-Abl.

REFERENCES

- Wisniewski, D., et al. 1994. A 62 kDa tyrosine phosphoprotein constitutively present in primary chronic phase chronic myelogenous leukemia enriched lineage negative blast populations. Leukemia 8: 688-693.
- Myers, M.G., et al. 1994. The IRS-1 signaling system. Trends Biochem. Sci. 19: 289-293.
- 3. Guo, D., et al. 1995. Vascular endothelial cell growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains. Association with endothelial cell proliferation. J. Biol. Chem. 270: 6729-6733.
- 4. Mayer, B.J., et al. 1995. Evidence that SH2 domains promote processive phosphorylation by protein-tyrosine kinases. Curr. Biol. 5: 296-305.
- Holgado, M.M., et al. 1996. A GRB2-associated docking protein in EGFand Insulin-receptor signalling. Nature 379: 560-564.
- Carpino, N., et al. 1997. p62Dok: a constitutively tyrosine-phosphorylated, GAP-associated protein in chronic myelogenous leukemia progenitor cells. Cell 88: 197-204.

CHROMOSOMAL LOCATION

Genetic locus: DOK2 (human) mapping to 8p21.3; Dok2 (mouse) mapping to 14 D2.

SOURCE

Dok-2 (M-20) is an affinity purified goat polyclonal antibody raised against a peptide mapping at the C-terminus of Dok-2 of mouse origin.

PRODUCT

Each vial contains 200 μg IgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-8131 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

STORAGE

Store at 4° C, **D0 NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

APPLICATIONS

Dok-2 (M-20) is recommended for detection of Dok-2 (DOK-R) of mouse, rat and, to a lesser extent, human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 μ g per 100-500 μ g of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500), immunohistochemistry (including paraffin-embedded sections) (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Suitable for use as control antibody for Dok-2 siRNA (m): sc-35212, Dok-2 shRNA Plasmid (m): sc-35212-SH and Dok-2 shRNA (m) Lentiviral Particles: sc-35212-V.

Molecular Weight of Dok-2: 56 kDa.

Positive Controls: CTLL-2 cell lysate: sc-2242.

DATA

Dok-2 (M-20): sc-8131. Western blot analysis of Dok-2 expression in CTLL-2 whole cell lysate.

SELECT PRODUCT CITATIONS

- Suzu, S., et al. 2000. p56^{Dok-2} as a cytokine-inducible inhibitor of cell proliferation and signal transduction. EMBO J. 19: 5114-5122.
- 2. Lamkin, T.J., et al. 2006. All-*trans* retinoic acid induces p62DOK1 and p56DOK2 expression which enhances induced differentiation and G_0 arrest of HL-60 leukemia cells. Am. J. Hematol. 81: 603-615.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

MONOS Satisfation Guaranteed

Try Dok-2 (G-3): sc-515560 or Dok-2 (E-10): sc-17830, our highly recommended monoclonal alternatives to Dok-2 (M-20).