SANTA CRUZ BIOTECHNOLOGY, INC.

RGS7 (C-19): sc-8139

BACKGROUND

Heterotrimeric G proteins function to relay information from cell surface receptors to various intracellular effectors. G proteins comprise α , β and γ subunits, and following activation the α subunit binds GTP and dissociates from the $\beta\gamma$ complex. A large group of proteins have been identified as GTPase-activating proteins (GAPs), including the RGS (regulator of G protein signaling) family, which serve to deactivate specific G_α isoforms by increasing the rate at which they convert GTP to GDP. A subfamily of RGS proteins expressed in the central nervous system contain, in addition to the highly conserved RGS domain, a characteristic GGL domain, or G protein γ subunit-like domain, which mediates binding to $G_{\beta\,5}$ subunits. This subfamily, which includes RGS6, RGS7, RGS9 and RGS11, associates with $G_{\beta\,5}$ to form active GAP complexes that are predominantly localized to the cytosol. RGS/ β 5 complexes preferentially target $G_{\alpha\,0}$ subunit for hydrolysis and inhibit $G_{\beta1\gamma2^-}$ mediated activation of phospholipase C.

CHROMOSOMAL LOCATION

Genetic locus: Rgs7 (mouse) mapping to 1 H3.

SOURCE

RGS7 (C-19) is an affinity purified goat polyclonal antibody raised against a peptide mapping at the C-terminus of RGS7 of mouse origin.

PRODUCT

Each vial contains 200 μg IgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-8139 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

RAPPLICATIONS

RGS7 (C-19) is recommended for detection of RGS7 of mouse and rat origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Suitable for use as control antibody for RGS7 siRNA (m): sc-40668, RGS7 shRNA Plasmid (m): sc-40668-SH and RGS7 shRNA (m) Lentiviral Particles: sc-40668-V.

Molecular Weight of RGS7: 56 kDa.

Positive Controls: mouse cerebellum extract: sc-2403 or mouse brain extract: sc-2253.

STORAGE

Store at 4° C, **D0 NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

ESEARCH USE

For research use only, not for use in diagnostic procedures.

DATA

Western blot analysis of RGS7 expression in mouse brain (\bm{A}, \bm{C}) and mouse cerebellum (\bm{B}, \bm{D}) extracts. Antibodies tested include RGS7 (C-19): sc-8139 (\bm{A}, \bm{B}) and RGS6/7 (M-19): sc-8141 $(\bm{C}, \bm{D}).$

RGS7 (**A**,**B**). Antibodies tested include RGS6/7 (M-19): sc-8141 (**A**) and RGS7 (C-19): sc-8139 (**B**)

Western blot analysis of bovine recombinant

SELECT PRODUCT CITATIONS

- 1. Abel, A., et al. 2000. Cell cycle-dependent coupling of the vasopressin V1a receptor to different G proteins. J. Biol. Chem. 275: 32543-32551.
- 2. Zhang, J.H. and Simonds, W.F. 2000. Copurification of brain G protein β 5 with RGS6 and RGS7. J. Neurosci. 20: RC59.
- Garzón, J., et al. 2003. The R7 subfamily of RGS proteins assists tachyphylaxis and acute tolerance at μ-opioid receptors. Neuropsychopharmacology 28: 1983-1990.
- 4. Rojkova, A.M., et al. 2003. G_{γ} subunit-selective G protein β 5 mutant defines regulators of G protein signaling protein binding requirement for nuclear localization. J. Biol. Chem. 278: 12507-12512.
- 5. Simonds, W.F., et al. 2004. Assays of nuclear localization of R7/G $_{\beta}$ 5 complexes. Meth. Enzymol. 390: 210-223.
- 6. López-Fando, A., et al. 2005. Expression of neural RGS-R7 and $\rm G_{\beta~5}$ proteins in response to acute and chronic morphine. Neuropsychopharmacology 30: 99-110.
- 7. Garzón, J., et al. 2005. Activation of μ -opioid receptors transfers control of G_{α} subunits to the regulator of G protein signaling RGS9-2: role in receptor desensitization. J. Biol. Chem. 280: 8951-8960.
- Barzon, J., et al. 2005. Morphine alters the selective association between μ-opioid receptors and specific RGS proteins in mouse periaqueductal gray matter. Neuropharmacology 48: 853-868.
- Alba-Delgado, C., et al. 2012. The function of α-2-adrenoceptors in the rat locus coeruleus is preserved in the chronic constriction injury model of neuropathic pain. Psychopharmacology 221: 53-65.

MONOS Satisfation Guaranteed

Try **RGS6/7 (F-10): sc-271643** or **RGS6/7 (B-10): sc-398222**, our highly recommended monoclonal aternatives to RGS7 (C-19).