DARPP-32 (N-19): sc-8483

The Power to Question

BACKGROUND

Dopaminergic signaling pathways, which are essential for multiple brain functions, are abnormal in several neurological disorders, such as schizophrenia, Parkinson's disease and drug abuse. DARPP-32 (for dopamine and adenosine 3',5'-monophosphate-regulated phosphoprotein) is abundant in neurons that receive dopaminergic input. Activation of PKA and the consequent phosphorylation of DARPP-32 on threonine occurs in response to dopamine acting upon D1-like receptors. Dopamine interaction with D2-like receptors results in the inhibition of PKA activation, the activation of protein phosphatase 2B and the consequent dephosphorylation of DARPP-32. Neurotransmitters other than dopamine may also be able to stimulate the phosphorylation or dephosphorylation of DARPP-32. Phosphorylated DARPP-32 is a potent inhibitor of PP-1.

REFERENCES

- Walaas, S.I., et al. 1984. DARPP-32, a dopamine- and adenosine 3':5'monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. I. Regional and cellular distribution in the rat brain. J. Neurosci. 4: 84-98.
- Hemmings, H.C., Jr., et al. 1984. DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. Nature 310: 503-505.
- 3. Hemmings, H.C., Jr., et al. 1984. DARPP-32, a dopamine- and adenosine 3':5'-monophosphate-regulated neuronal phosphoprotein. I. Amino acid sequence around the phosphorylated threonine. J. Biol. Chem. 259: 14486-14490.
- Nishi, A., et al. 1997. Bidirectional regulation of DARPP-32 phosphorylation by dopamine. J. Neurosci. 17: 8147-8155.
- 5. Fienberg, A.A., et al. 1998. DARPP-32: regulator of the efficacy of dopaminergic neuro-transmission. Science 281: 838-842.

CHROMOSOMAL LOCATION

Genetic locus: PPP1R1B (human) mapping to 17q12; Ppp1r1b (mouse) mapping to 11 D.

SOURCE

DARPP-32 (N-19) is an affinity purified goat polyclonal antibody raised against a peptide mapping at the N-terminus of DARPP-32 of human origin.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

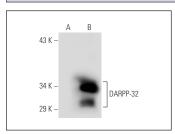
Blocking peptide available for competition studies, sc-8483 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

STORAGE

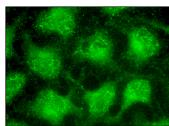
Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

APPLICATIONS

DARPP-32 (N-19) is recommended for detection of DARPP-32 of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).


DARPP-32 (N-19) is also recommended for detection of DARPP-32 in additional species, including canine, bovine, porcine and avian.

Suitable for use as control antibody for DARPP-32 siRNA (h): sc-35173, DARPP-32 siRNA (m): sc-35174, DARPP-32 shRNA Plasmid (h): sc-35173-SH, DARPP-32 shRNA Plasmid (m): sc-35174-SH, DARPP-32 shRNA (h) Lentiviral Particles: sc-35173-V and DARPP-32 shRNA (m) Lentiviral Particles: sc-35174-V.


Molecular Weight of DARPP-32: 32 kDa.

Positive Controls: mouse brain extract: sc-2253, rat brain extract: sc-2392 or DARPP-32 (m): 293T Lysate: sc-125226.

DATA

DARPP-32 (N-19): sc-8483. Western blot analysis of DARPP-32 expression in non-transfected: sc-117752 (A) and mouse DARPP-32 transfected: sc-125226 (B) 293T whole cell lysates.

DARPP-32 (N-19): sc-8483. Immunofluorescence staining of methanol-fixed HeLa cells showing nuclear and cytoplasmic localization.

SELECT PRODUCT CITATIONS

- Yang, Z., et al. 2008. Neonatal hypoxic/ischemic brain injury induces production of calretinin-expressing interneurons in the striatum. J. Comp. Neurol. 511: 19-33.
- Benderska, N., et al. 2010. DARPP-32 binds to tra2-β1 and influences alternative splicing. Biochim. Biophys. Acta 1799: 448-453.
- 3. Reimers-Kipping, S., et al. 2011. Humanized Foxp2 specifically affects cortico-basal ganglia circuits. Neuroscience 175: 75-84.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

Try DARPP-32 (H-3): sc-271111 or DARPP-32 (G-5): sc-398360, our highly recommended monoclonal aternatives to DARPP-32 (N-19). Also, for AC, HRP, FITC, PE, Alexa Fluor[®] 488 and Alexa Fluor[®] 647 conjugates, see DARPP-32 (H-3): sc-271111.