β-1,4-GalNAc-T (Q-20): sc-87539

The Power to Question

BACKGROUND

The chondroitin N-acetylgalactosaminyltransferase family includes β -1,4-GalNAc-T, β -1,4-GalNAc-T2, β -1,4-GalNAc-T3 and β -1,4-GalNAc-T4. The β -1,4-GalNAc-T protein consists of a short N-terminal residue, a transmembrane region and a long C-terminal residue, which includes a catalytic domain and localizes to the Golgi apparatus. β -1,4-GalNAc-T utilizes simple ganglioside GM3 as a substrate for more complex gangliosides GM2, GM1 and GD1 α . β -1,4-GalNAc-T is expressed in normal brain tissues and in various malignant transformed cells, such as malignant melanoma, neuroblastoma and adult T cell leukemia. Mice lacking the β -1,4-GalNAc-T protein develop significant and progressive behavioral neuropathies, including deficits in reflexes, strength, coordination and balance. β -1,4-GalNAc-T is a potential molecular marker for detecting melanoma cells and monitoring tumor progression.

REFERENCES

- Hidari, J.K., et al. 1994. β 1-4N-acetylgalactosaminyltransferase can synthesize both asialoglycosphingolipid GM2 and glycosphingolipid GM2 in vitro and in vivo: isolation and characterization of a β 1-4N-acetylgalactosaminyltransferase cDNA clone from rat ascites hepatoma cell line AH7974F. Biochem. J. 303: 957-965.
- 2. Lutz, M.S., et al. 1994. Cloned β 1,4 N-acetylgalactosaminyltransferase synthesizes GA2 as well as gangliosides GM2 and GD2. GM3 synthesis has priority over GA2 synthesis for utilization of lactosylceramide substrate *in vivo*. J. Biol. Chem. 269: 29227-29231.
- 3. Haraguchi, M., et al. 1995. The effects of the site-directed removal of N-glycosylation sites from β -1,4-N-acetylgalactosaminyltransferase on its function. Biochem. J. 312: 273-280.
- Sango, K., et al. 1995. β-1,4-N-Acetylgalactosaminyltransferase involved in ganglioside synthesis: cDNA sequence, expression, and chromosome mapping of the mouse gene. Genomics 27: 362-365.
- 5. Furukawa, K., et al. 1996. Genomic organization and chromosomal assignment of the human β 1, 4-N-acetylgalactosaminyltransferase gene. Identification of multiple transcription units. J. Biol. Chem. 271: 20836-20844.
- 6. Kuo, C.T., et al. 1998. Assessment of messenger RNA of β 1 \rightarrow 4-N-acetylgalactosaminyl-transferase as a molecular marker for metastatic melanoma. Clin. Cancer Res. 4: 411-418.
- 7. Chiavegatto, S., et al. 2000. A functional role for complex gangliosides: motor deficits in GM2/GD2 synthase knockout mice. Exp. Neurol. 166: 227-234.
- 8. Abate, L.E., et al. 2006. Gene-linked shift in ganglioside distribution influences growth and vascularity in a mouse astrocytoma. J. Neurochem. 98: 1973-1984.

CHROMOSOMAL LOCATION

Genetic locus: CSGALNACT1 (human) mapping to 8p21.3; Csgalnact1 (mouse) mapping to 8 B3.3.

SOURCE

 β -1,4-GalNAc-T (Q-20) is an affinity purified goat polyclonal antibody raised against a peptide mapping within an internal region of β -1,4-GalNAc-T of human origin.

PRODUCT

Each vial contains 200 μg IgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-87539 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

APPLICATIONS

 β -1,4-GalNAc-T (Q-20) is recommended for detection of β -1,4-GalNAc-T of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000); non cross-reactive with β -1,4-GalNAc-T-3.

 β -1,4-GalNAc-T (Q-20) is also recommended for detection of β -1,4-GalNAc-T in additional species, including equine, canine, bovine and porcine.

Suitable for use as control antibody for β -1,4-GalNAc-T siRNA (h): sc-77837, β -1,4-GalNAc-T siRNA (m): sc-108228, β -1,4-GalNAc-T shRNA Plasmid (h): sc-77837-SH, β -1,4-GalNAc-T shRNA (h) Lentiviral Particles: sc-77837-V and β -1,4-GalNAc-T shRNA (m) Lentiviral Particles: sc-108228-V.

Molecular Weight of β-1,4-GalNAc-T: 61 kDa.

RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use donkey anti-goat IgG-HRP: sc-2020 (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible donkey anti-goat IgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use donkey anti-goat IgG-FITC: sc-2024 (dilution range: 1:100-1:400) or donkey anti-goat IgG-TR: sc-2783 (dilution range: 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**