SANTA CRUZ BIOTECHNOLOGY, INC.

EGL-15 (cC-18): sc-9212

BACKGROUND

Cell proliferation and development are carefully controlled in *C. elegans*, with each cell following a nearly invariant pattern of differentiation. Vulval development in particular provides a useful model for studying how cell fate is determined. Cell signaling pathways such as Notch and Ras pathways are critical for proper cell fate determination. LET-60, a member of the *C. elegans* Ras superfamily, coordinates with BAR-1, the β -catenin homologue, and acts as a switch between vulval and hypodermal cell fates during the inductive signaling pathway that initiates vulva formation. LET-23 is a tyrosine kinase receptor required for the induction of the *C. elegans* vulva, survival past the L1 stage, hermaphrodite fertility and male spicule development. LET-23 is the homolog of the EGFR in *C. elegans*, and is preferentially localized to the basolateral membranes of the six vulval precursor cells. EGL-15 encodes a receptor tyrosine kinase of the fibroblast growth factor receptor (FGFR) subfamily and is required for the normal cell migrations of the sex myoblasts in *C. elegans*.

REFERENCES

- 1. Beitel, G.J., et al. 1990. *Caenorhabditis elegans* Ras gene LET-60 acts as a switch in the pathway of vulval induction. Nature 348: 503-509.
- DeVore, D.L., et al. 1995. An FGF receptor signaling pathway is required for the normal cell migrations of the sex myoblasts in *C. elegans* hermaphrodites. Cell 83: 611-620.
- 3. Sakai, T., et al. 1996. Genomic structure and 5' regulatory regions of the LET-23 gene in the nematode *C. elegans.* J. Mol. Biol. 256: 548-555.
- 4. Sundaram, M., et al. 1996. Control and integration of cell signaling pathways during *C. elegans* vulval development. Bioessays 18: 473-480.
- Sommer, R.J., et al. 1996. Evolution of nematode vulval fate patterning. Dev. Biol. 173: 396-407.
- Kornfeld, K. 1997. Vulval development in *Caenorhabditis elegans*. Trends Genet. 13: 55-61.
- 7. Eisenmann, D.M., et al. 1998. The β -catenin homolog BAR-1 and LET-60 RAS coordinately regulate the HOX gene LIN-39 during *Caenorhabditis elegans* vulval development. Development 125: 3667-3680.
- Kaech, S.M., et al. 1998. The LIN-2/LIN-7/LIN-10 complex mediates basolateral membrane localization of the *C. elegans* EGF receptor LET-23 in vulval epithelial cells. Cell 94: 761-771.

SOURCE

EGL-15 (cC-18) is an affinity purified goat polyclonal antibody raised against a peptide mapping near the C-terminus of EGL-15 of *C. elegans* origin.

STORAGE

Store at 4° C, **D0 NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-9212 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

APPLICATIONS

EGL-15 (cC-18) is recommended for detection of EGL-15 of *Caenorhabditis elegans* origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use donkey anti-goat IgG-HRP: sc-2020 (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible donkey anti-goat IgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluo-rescence: use donkey anti-goat IgG-FITC: sc-2024 (dilution range: 1:100-1:400) or donkey anti-goat IgG-TR: sc-2783 (dilution range: 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941.

SELECT PRODUCT CITATIONS

- 1. de los Santos-Arteaga, M., et al. 2003. Analgesia induced by dietary restriction is mediated by the κ -opioid system. J. Neurosci. 23: 11120-11126.
- Jonker, S.S., et al. 2011. The effect of adrenalectomy on the cardiac response to subacute fetal anemia. Can. J. Physiol. Pharmacol. 89: 79-88.
- Chen, F., et al. 2011. Occludin is regulated by epidermal growth factor receptor activation in brain endothelial cells and brains of mice with acute liver failure. Hepatology 53: 1294-1305.
- Jonker, S.S., et al. 2011. Transfusion effects on cardiomyocyte growth and proliferation in fetal sheep after chronic anemia. Pediatr. Res. 69: 485-490.
- Chen, F., et al. 2013. TIMP-1 attenuates blood-brain barrier permeability in mice with acute liver failure. J. Cereb. Blood Flow Metab. 33: 1041-1049.

RESEARCH USE

For research use only, not for use in diagnostic procedures.