BACKGROUND

The p53 gene is a widely studied anti-oncogene, or tumor suppressor gene. The p53 gene product can act as a negative regulator of cell growth in response to DNA damage. Mutations and allelic loss of the p53 gene have been associated with malignant transformation in a wide variety of human tumors. p53 shares considerable sequence similarity with p73, a gene that maps to a region in chromosome 1 that is frequently deleted in neuroblastomas. However, p73 does not appear to be activated by DNA damaging agents. The p73 isoform p73 α inhibits drug-induced apoptosis in small cell lung carcinoma cells, while the p73 isoform p73 promotes it. p73 α also prevents Bax activation, mitochondrial dysfunction, caspase activation and is able to reduce apoptosis induced by the BH3-only protein PUMA (p53 upregulated modulator of apoptosis). There is an equilibrium between p73 α and $p 73 \beta$, demonstrated by the fact that p73 inhibits the pro-apoptotic effect of p73 β.

CHROMOSOMAL LOCATION

Genetic locus: TP73 (human) mapping to 1p36.32; Trp73 (mouse) mapping to 4 E 2 .

SOURCE

p73 (S-20) is an affinity purified goat polyclonal antibody raised against a peptide mapping near the N-terminus of $p 73 \beta$ of human origin.

PRODUCT

Each vial contains $200 \mu \mathrm{ggG}$ in 1.0 ml of PBS with $<0.1 \%$ sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-9651 P, (100 $\mu \mathrm{g}$ peptide in 0.5 ml PBS containing $<0.1 \%$ sodium azide and $0.2 \% \mathrm{BSA})$.

APPLICATIONS

$p 73(S-20)$ is recommended for detection of p73 isoforms p73 $\alpha, \beta, \gamma, \delta, \varepsilon$, and ξ of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 $\mu \mathrm{g}$ per 100$500 \mu \mathrm{~g}$ of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500), immunohistochemistry (including paraffin-embedded sections) (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).
$p 73(S-20)$ is also recommended for detection of p73 isoforms p73 $\alpha, \beta, \gamma, \delta$, ε, and ζ in additional species, including porcine.
Suitable for use as control antibody for p73 siRNA (h): sc-36167, p73 siRNA (m): sc-36168, p73 shRNA Plasmid (h): sc-36167-SH, p73 shRNA Plasmid (m): sc-36168-SH, p73 shRNA (h) Lentiviral Particles: sc-36167-V and $p 73$ shRNA (m) Lentiviral Particles: sc-36168-V.

Molecular Weight of p73: 73 kDa .
Positive Controls: NCI-H1688 whole cell lysate, A549 cell lysate: sc-2413 or HeLa whole cell lysate: sc-2200.

STORAGE

Store at $4^{\circ} \mathrm{C},{ }^{* *}$ DO NOT FREEZE ${ }^{* *}$. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

DATA

p73 (S-20): sc-9651. Western blot analysis of p73 expression in A549 (A), NCl-H1688 (B) and HeLa (C) whole cell lysates.

p73 (S-20): sc-9651. Immunoperoxidase staining of formalin fixed, paraffin-embedded mouse kidney tissue showing nuclear localization.

SELECT PRODUCT CITATIONS

1. Pan, H., et al. 2003. Cloning and developmental expression of p73 cDNA in zebrafish. Biochem. Biophys. Res. Commun. 307: 395-400.
2. Hoshino, M., et al. 2006. Transcriptional repression induces a slowly progressive atypical neuronal death associated with changes of YAP isoforms and p73. J. Cell Biol. 172: 589-604.
3. Yu, J., et al. 2007. A network of p73, p53 and Egr1 is required for efficient apoptosis in tumor cells. Cell Death Differ. 14: 436-446.
4. Kitagawa, M., et al. 2008. Skp2 suppresses p53-dependent apoptosis by inhibiting p300. Mol. Cell 29: 217-231.
5. Yamauchi, R., et al. 2009. Identification of epigallocatechin-3-gallate in green tea polyphenols as a potent inducer of p53-dependent apoptosis in the human lung cancer cell line A549. Toxicol. In Vitro 23: 834-839.
6. Saha, A., et al. 2012. E2F1 mediated apoptosis induced by the DNA damage response is blocked by EBV nuclear antigen 3C in lymphoblastoid cells. PLoS Pathog. 8: e1002573.
7. Patwardhan, G.A., et al. 2014. Ceramide modulates pre-mRNA splicing to restore the expression of wild-type tumor suppressor p53 in deletionmutant cancer cells. Biochim. Biophys. Acta 1841: 1571-1580.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

Try p73 (E-4): sc-17823 or p73 (5B429): sc-56191, our highly recommended monoclonal aternatives to p73 (S-20). Also, for AC, HRP, FITC, PE, Alexa Fluor ${ }^{\circledR} 488$ and Alexa Fluor ${ }^{\circledR} 647$ conjugates, see p73 (E-4):
sc-17823.

