SANTA CRUZ BIOTECHNOLOGY, INC.

elF2Bε (P-7): sc-9982

BACKGROUND

The initiation of protein synthesis in eukaryotic cells is regulated by interactions between protein initiation factors and RNA molecules. The eukaryotic initiation complex elF2B exists as a five subunit complex composed of elF2Ba, elF2B\beta, elF2B γ , elF2B β , and elF2B ϵ . The elF2B complex catalyzes the exchange of GDP for GTP on the elF2 complex, following the interaction of elF2/GTP with the 40S ribosomal subunit. Guanine nucleotide exchange factor (GEF) activity was exhibited by the elF2B ϵ subunit alone, but it was greater in the presence of all five elF2B subunits. Phosphorylation of elF2 inhibits GEF activity of elF2B, an inhibition that requires the elF2Ba subunit.

REFERENCES

- Henderson, R.A., et al. 1994. The δ-subunit of murine guanine nucleotide exchange factor eIF-2B. Characterization of cDNAs predicts isoforms differing at the amino-terminal end. J. Biol. Chem. 269: 30517-30523.
- Flowers, K.M., et al. 1995. Structure and sequence of the gene encoding the alpha-subunit of rat translation initiation factor-2B. Biochim. Biophys. Acta 1264: 163-167.
- Price, N.T., et al. 1996. Cloning of cDNA for the γ-subunit of mammalian translation initiation factor 2B, the guanine nucleotide-exchange factor for eukaryotic initiation factor 2. Biochem. J. 318: 631-636.
- 4. Price, N.T., et al. 1996. eIF2B, the guanine nucleotide-exchange factor for eukaryotic initiation factor 2. Sequence conservation between the α , β and δ subunits of eIF2B from mammals and yeast. Biochem. J. 318: 637-643.
- Asuru, A.I., et al. 1996. Cloning and characterization of cDNAs encoding the ε-subunit of eukaryotic initiation factor-2B from rabbit and human. Biochim. Biophys. Acta 1307: 309-317.
- Webb, B.L. and Proud, C.G. 1997. Eukaryotic initiation factor 2B (eIF2B). Int. J. Biochem. Cell Biol. 29: 1127-1131.
- Fabian, J.R., et al. 1997. Subunit assembly and guanine nucleotide exchange activity of eukaryotic initiation factor-2B expressed in Sf9 cells. J. Biol. Chem. 272: 12359-12365.

CHROMOSOMAL LOCATION

Genetic locus: Eif2b5 (mouse) mapping to 16 A3.

SOURCE

 $elF2B\epsilon$ (P-7) is a mouse monoclonal antibody raised against full length $elF2B\epsilon$ of rat origin.

PRODUCT

Each vial contains 200 μg lgG_1 kappa light chain in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

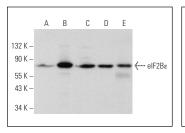
STORAGE

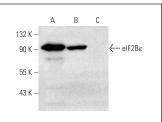
Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

APPLICATIONS

elF2B ϵ (P-7) is recommended for detection of elF2B ϵ of mouse and rat origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) and immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell lysate)].

Suitable for use as control antibody for eIF2B ϵ siRNA (m): sc-35279, eIF2B ϵ shRNA Plasmid (m): sc-35279-SH and eIF2B ϵ shRNA (m) Lentiviral Particles: sc-35279-V.


Molecular Weight of elF2BE: 90 kDa.


Positive Controls: PC-12 cell lysate: sc-2250, KNRK whole cell lysate: sc-2214 or NIH/3T3 whole cell lysate: sc-2210.

RECOMMENDED SUPPORT REAGENTS

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-IgGκ BP-HRP: sc-516102 or m-IgGκ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz Marker™ Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunoprecipitation: use Protein A/G PLUS-Agarose: sc-2003 (0.5 ml agarose/2.0 ml).

DATA

 $elF2B\epsilon$ (P-7): sc-9982. Western blot analysis of $elF2B\epsilon$ expression in c4 (A), PC-12 (B), F9 (C) and RAW 264.7 (D) whole cell lysates and mouse brain tissue extract (E).

eIF2Bc (P-7): sc-9982. Western blot analysis of eIF2Bc expression in KNRK (A), NIH/313 (B) and K-562 (C) whole cell lysates. Note lack of reactivity with human eIF2Bc in Lane C.

SELECT PRODUCT CITATIONS

 Balachandran, S. and Barber, G.N. 2004. Defective translational control facilitates vesicular stomatitis virus oncolysis. Cancer Cell 5: 51-65.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.