MATH-3 siRNA (h): sc-106204

The Power to Question

BACKGROUND

The Neurogenin family of proteins belongs to the basic helix-loop-helix (bHLH) superfamily and consists of Neurogenin 1, Neurogenin 2 and Neurogenin 3 (also designated ngn3). bHLH members are transcriptional regulators that determine cell fate. During mouse neurogenesis, Neurogenin 1 and Neurogenin 2 are expressed in distinct progenitor populations in the central and peripheral nervous systems. Targeted mutation analyses showed that Neurogenin 1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia and that Neurogenin 2 is essential for the determination of precursors for epibranchial placode-derived sensory neurons. The gene which encodes Neurogenin 1 maps to human chromosome 5q31.1. The Drosophila "atonal" gene is a proneural gene that produces a protein with basic helix loop helix (bHLH) domains which plays an essential role in the development of the Drosophila nervous system. MATH-2 and MATH-3 are expressed in the dorsal regions of the hindbrain and spinal cord. The human atonal protein homolog (HATH-1) shows 89% sequence identity with the mouse atonal protein homolog (MATH-1). The gene which encodes HATH-1 maps to human chromosome 4q22.2. The genes which encode MATH-2 and MATH-3 map to mouse chromosome 6 B3 and 10 D3, respectively.

REFERENCES

- Jacquemin, P., et al. 2000. Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn3. Mol. Cell. Biol. 20: 4445-4454.
- Gradwohl, G., et al. 2000. Neurogenin 3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl. Acad. Sci. USA 97: 1607-1611.
- Schwitzgebel, V.M., et al. 2000. Expression of Neurogenin 3 reveals an islet cell precursor population in the pancreas. Development 127: 3533-3542.
- 4. Jensen, J., et al. 2000. Independent development of pancreatic α and β -cells from Neurogenin 3-expressing precursors: a role for the notch pathway in repression of premature differentiation. Diabetes 49: 163-176.
- 5. Huang, H.P., et al. 2000. Regulation of the pancreatic islet-specific gene BETA2 (neuroD) by neurogenin 3. Mol. Cell. Biol. 20: 3292-3307.
- Ma, Q., et al. 1998. Neurogenin 1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20: 469-482.

CHROMOSOMAL LOCATION

Genetic locus: NEUROD4 (human) mapping to 12g13.2.

PRODUCT

MATH-3 siRNA (h) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see MATH-3 shRNA Plasmid (h): sc-106204-SH and MATH-3 shRNA (h) Lentiviral Particles: sc-106204-V as alternate gene silencing products.

For independent verification of MATH-3 (h) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-106204A, sc-106204B and sc-106204C.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

MATH-3 siRNA (h) is recommended for the inhibition of MATH-3 expression in human cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

GENE EXPRESSION MONITORING

MATH-3 (D-10): sc-393724 is recommended as a control antibody for monitoring of MATH-3 gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500).

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850.

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor MATH-3 gene expression knockdown using RT-PCR Primer: MATH-3 (h)-PR: sc-106204-PR (20 μ l). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**