TOK-1 siRNA (h): sc-106626

The Power to Question

BACKGROUND

Combinations of cyclin-cyclin-dependent kinase (CDK) complex and their inhibitors coordinately regulate cell-cycle movement. INK4 family proteins p15, p16, p18 and P19 inhibit CDK4/CDK, whereas Cip/Kip family proteins p21, p27 and P57, inhibit all of the CDKs. p21 induces cell cycle arrest, thus inhibiting CDK activity for Rb inactivation. In addition to binding of CDK-cyclin to the N-terminal region of p21, other proteins such as proliferating cell nuclear antigen (PCNA), SET/TAF1 and calmodulin are able to bind to the C-proximal region of p21. A novel p21^{Cip1}-binding protein TOK-1 binds to the C-terminal region of p21. TOK-1 is alternatively spliced to form TOK-1 α and TOK1 β , which are comprised of 322 and 314 amino acids, respectively. TOK-1 colocalizes with p21 in nuclei and has similiar expression pattern to that of p21. $TOK1\alpha$, but not $TOK-1\beta$, directly binds to the C-terminal proximal region of p21 and both are expressed at the G_1/S boundary of cell-cycle. TOK-1 α preferentially binds to an active form of CDK2 via p21 to make a ternary complex in human cells. In addition, TOK-1 α enhances the inhibitory activity of p21 to Histone H1 kinase activity of CDK2, suggesting that TOK-1 α may be a new type of CDK2 modulator.

REFERENCES

- Chen, J., et al. 1995. Separate domains of p21 involved in the inhibition of Cdk kinase and PCNA. Nature 374: 386-388.
- 2. Goubin F. and Ducommun B. 1995. Identification of binding domains on the p21^{Cip1} cyclin-dependent kinase inhibitor. Oncogene 10: 2281-2287.
- Harper, J.W., et al. 1995. Inhibition of cyclin-dependent kinases by p21 Mol. Biol. Cell 6: 387-400.
- Luo, Y., et al. 1995. Cell-cycle inhibition by independent CDK and PCNA binding domains in p21^{Cip1}. Nature 375: 159-161.
- 5. Connell-Crowley, L., et al. 1998. G_1 cyclin-dependent kinases are sufficient to initiate DNA synthesis in quiescent human fibroblasts. Curr. Biol. 8: 65-68.
- 6. Hengstschlager, M., et al. 1999. Cyclin-dependent kinases at the G_1 -S transition of the mammalian cell cycle. Mutat. Res. 436: 1-9.
- Ono, T., et al. 2000. TOK-1, novel p21^{Cip1}-binding protein that cooperatively enhances p21-dependent inhibitory activity toward CDK2 kinase. J. Biol. Chem. 275: 31145-31154.

CHROMOSOMAL LOCATION

Genetic locus: BCCIP (human) mapping to 10q26.2.

PRODUCT

TOK-1 siRNA (h) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see TOK-1 shRNA Plasmid (h): sc-106626-SH and TOK-1 shRNA (h) Lentiviral Particles: sc-106626-V as alternate gene silencing products.

For independent verification of TOK-1 (h) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-106626A, sc-106626B and sc-106626C.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

TOK-1 siRNA (h) is recommended for the inhibition of TOK-1 expression in human cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

GENE EXPRESSION MONITORING

 $TOK-1\beta$ (B-10): sc-271985 is recommended as a control antibody for monitoring of TOK-1 gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500).

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor TOK-1 gene expression knockdown using RT-PCR Primer: TOK-1 (h)-PR: sc-106626-PR (20 μ l). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

SELECT PRODUCT CITATIONS

1. Dixit, U., et al. 2014. Fuse binding protein antagonizes the transcription activity of tumor suppressor protein p53. BMC Cancer 14: 925.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com