L-type Ca⁺⁺ CP β 3 siRNA (m): sc-108006

The Power to Question

BACKGROUND

Voltage-dependent calcium channels are essential for the release of neurotransmitters. L-type (long lasting current) voltage-dependent calcium channels are composed of four subunits: an $\alpha 1$ subunit, a β subunit, a γ subunit and an $\alpha 2\delta$ subunit. The β subunit is encoded by four genes, designated $\beta 1$ - $\beta 4$, all of which contribute to the diversity of calcium currents and are involved in membrane trafficking of the $\alpha 1$ subunit. L-type Ca++ CP $\beta 3$, also known as CACNB3 (calcium channel voltage-dependent subunit β 3), CACNLB3 or CAB3, is a 484 amino acid protein that contains one SH3 domain and is expressed in ovary, brain and smooth muscle. Functioning as one of the four components of the β subunit, L-type Ca++ CP $\beta 3$ increases the peak calcium current in voltage-dependent calcium channels, thereby shifting the voltage dependencies of activation and inactivation and controlling G protein inhibition and $\alpha 1$ membrane targeting. Two isoforms of L-type Ca++ CP $\beta 3$ exist due to alternative splicing events.

REFERENCES

- Collin, T., Lory, P., Taviaux, S., Courtieu, C., Guilbault, P., Berta, P. and Nargeot, J. 1994. Cloning, chromosomal location and functional expression of the human voltage-dependent calcium-channel β3 subunit. Eur. J. Biochem. 220: 257-262.
- 2. Yamada, Y., Masuda, K., Li, Q., Ihara, Y., Kubota, A., Miura, T., Nakamura, K., Fujii, Y., Seino, S. and Seino, Y. 1995. The structures of the human calcium channel α 1 subunit (CACNL1A2) and β subunit (CACNLB3) genes. Genomics. 27: 312-319.
- Murakami, M., Wissenbach, U. and Flockerzi, V. 1996. Gene structure of the murine calcium channel β3 subunit, cDNA and characterization of alternative splicing and transcription products. Eur. J. Biochem. 236: 138-143
- Murakami, M., Fleischmann, B., De Felipe, C., Freichel, M., Trost, C., Ludwig, A., Wissenbach, U., Schwegler, H., Hofmann, F., Hescheler, J., Flockerzi, V. and Cavalié, A. 2002. Pain perception in mice lacking the β3 subunit of voltage-activated calcium channels. J. Biol. Chem. 277: 40342-40351.

CHROMOSOMAL LOCATION

Genetic locus: Cacnb3 (mouse) mapping to 15 F1.

PRODUCT

L-type Ca++ CP β 3 siRNA (m) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see L-type Ca++ CP β 3 shRNA Plasmid (m): sc-108006-SH and L-type Ca++ CP β 3 shRNA (m) Lentiviral Particles: sc-108006-V as alternate gene silencing products.

For independent verification of L-type Ca⁺⁺ CP $\beta 3$ (m) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-108006A, sc-108006B and sc-108006C.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

L-type Ca++ CP β 3 siRNA (m) is recommended for the inhibition of L-type Ca++ CP β 3 expression in mouse cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

GENE EXPRESSION MONITORING

L-type Ca⁺⁺ CP β 3 (7D1): sc-130560 is recommended as a control antibody for monitoring of L-type Ca⁺⁺ CP β 3 gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500).

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850.

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor L-type Ca⁺⁺ CP $\beta 3$ gene expression knockdown using RT-PCR Primer: L-type Ca⁺⁺ CP $\beta 3$ (m)-PR: sc-108006-PR (20 μ l). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.