3β-HSD2 siRNA (m): sc-108885 The Power to Question ## **BACKGROUND** 3β -hydroxysteroid dehydrogenase (3 β -HSD), also known as HSD3B1 or HSDB3, is a bifunctional enzyme that plays a crucial role in the synthesis of all classes of hormonal steroids. Two human 3β -HSD proteins, designated type I (3 β -HSD) and type II (3 β -HSD2), are expressed by different genes and function in different areas of the body. Localized to the membrane of the endoplasmic reticulum (ER) and expressed in testis, ovaries and adrenal gland, 3β -HSD2 is the type II protein that catalyzes the oxidative conversion of Δ^5 -ene-3 β -hydroxysteroid, as well as the conversion of various ketosteroids. Defects in the gene encoding 3β -HSD2 are the cause of adrenal hyperplasia type 2 (AH2), a form of recessive congenital adrenal hyperplasia that is characterized by excess androgen which can lead to ambiguous genitalia and rapid somatic growth. # **REFERENCES** - Thomas, J.L., et al. 2002. Structure/function relationships responsible for the kinetic differences between human type 1 and type 2 3β-hydroxysteroid dehydrogenase and for the catalysis of the type 1 activity. J. Biol. Chem. 277: 42795-42801. - Thomas, J.L., et al. 2003. Structure/function relationships responsible for coenzyme specificity and the isomerase activity of human type 1 3βhydroxysteroid dehydrogenase/isomerase. J. Biol. Chem. 278: 35483-35490. - 3. Foti, D.M., et al. 2004. YY1 binding within the human HSD3B2 gene intron 1 is required for maximal basal promoter activity: identification of YY1 as the 3β 1-A factor. J. Mol. Endocrinol. 33: 99-119. - Thomas, J.L., et al. 2004. Serine 124 completes the Tyr, Lys and Ser triad responsible for the catalysis of human type 1 3β-hydroxysteroid dehydrogenase. J. Mol. Endocrinol. 33: 253-261. - Carbunaru, G., et al. 2004. The hormonal phenotype of nonclassic 3β-hydroxysteroid dehydrogenase (HSD3B) deficiency in hyperandrogenic females is associated with Insulin-resistant polycystic ovary syndrome and is not a variant of inherited HSD3B2 deficiency. J. Clin. Endocrinol. Metab. 89: 783-794. - 6. Thomas, J.L., et al. 2007. Structure/function of human type 1 3β -hydroxysteroid dehydrogenase: an intrasubunit disulfide bond in the Rossmann-fold domain and a Cys residue in the active site are critical for substrate and coenzyme utilization. J. Steroid Biochem. Mol. Biol. 107: 80-87. - Wang, L., et al. 2007. Human 3β-hydroxysteroid dehydrogenase types 1 and 2: gene sequence variation and functional genomics. J. Steroid Biochem. Mol. Biol. 107: 88-99. - Park, J.Y., et al. 2007. Association between polymorphisms in HSD3B1 and UGT2B17 and prostate cancer risk. Urology 70: 374-379. - Xing, Y., et al. 2008. The farnesoid X receptor regulates transcription of 3β-hydroxysteroid dehydrogenase type 2 in human adrenal cells. Mol. Cell. Endocrinol. 299: 153-162. # CHROMOSOMAL LOCATION Genetic locus: Hsd3b2 (mouse) mapping to 3 F2.2. #### **PRODUCT** $3\beta\text{-HSD2}$ siRNA (m) is a target-specific 19-25 nt siRNA designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μM solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see $3\beta\text{-HSD2}$ shRNA Plasmid (m): sc-108885-SH and $3\beta\text{-HSD2}$ shRNA (m) Lentiviral Particles: sc-108885-V as alternate gene silencing products. ## STORAGE AND RESUSPENSION Store lyophilized siRNA duplex at -20 $^{\circ}$ C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20 $^{\circ}$ C, avoid contact with RNAses and repeated freeze thaw cycles. Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution. #### **APPLICATIONS** $3\beta\text{-HSD2}$ siRNA (m) is recommended for the inhibition of $3\beta\text{-HSD2}$ expression in mouse cells. # **SUPPORT REAGENTS** For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238. # **RT-PCR REAGENTS** Semi-quantitative RT-PCR may be performed to monitor 3 β -HSD2 gene expression knockdown using RT-PCR Primer: 3 β -HSD2 (m)-PR: sc-108885-PR (20 μ l). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C. #### **RESEARCH USE** For research use only, not for use in diagnostic procedures. ## **PROTOCOLS** See our web site at www.scbt.com for detailed protocols and support products.