MELK (h): 293T Lysate: sc-110053

The Power to Question

BACKGROUND

Maternal embryonic leucine zipper kinase (KIAA0175, HPK38) or MELK, a new member of the Snf1/AMPK family of kinases, encodes a protein with a kinase catalytic domain and a leucine zipper motif consisting of a periodic repetition of leucine residues at every seventh residue located within the N-terminal catalytic domain. This motif has been observed in myriad DNA-binding proteins and is presumed to be involved in protein-DNA interactions, and potentially protein-protein interactions. Research predicts that the gene product of MELK plays a role in the signal transduction events in the egg and early embryo. Mouse and human MELK proteins share 95% sequence identity in the kinase domain and northern blot analysis in mouse indicates that MELK expression is restricted to spermatogonia in the testis and to oocytes in the ovary.

REFERENCES

- Nagase, T., et al. 1996. Prediction of the coding sequences of unidentified human genes. V. The coding sequences of 40 new genes (KIAA0161-KIAA0200) deduced by analysis of cDNA clones from human cell line KG-1. DNA Res. 3: 17-24.
- Heyer, B.S., et al. 1997. New member of the Snf1/AMPK kinase family, Melk, is expressed in the mouse egg and preimplantation embryo. Mol. Reprod. Dev. 47: 148-156.
- Online Mendelian Inheritance in Man, OMIM™. 2002. Johns Hopkins University, Baltimore, MD. MIM Number: 607025. World Wide Web URL: http://www.ncbi.nlm.nih.gov/omim/
- Seong, H.A., et al. 2002. Phosphorylation of a novel zinc-finger-like protein, ZPR9, by murine protein serine/threonine kinase 38 (MPK38). Biochem. J. 361: 597-604.
- Vulsteke, V., et al. 2004. Inhibition of spliceosome assembly by the cell cycle-regulated protein kinase MELK and involvement of splicing factor NIPP1. J. Biol. Chem. 279: 8642-8647.
- Beullens, M., et al. 2005. Substrate specificity and activity regulation of protein kinase MELK. J. Biol. Chem. 280: 40003-40011.
- Nakano, I., et al. 2005. Maternal embryonic leucine zipper kinase (MELK) regulates multipotent neural progenitor proliferation. J. Cell Biol. 170: 413-427.
- Badouel, C., et al. 2006. M-phase MELK activity is regulated by MPF and MAPK. Cell Cycle 5: 883-889.
- 9. Cordes, S., et al. 2006. The C. elegans MELK ortholog PIG-1 cell fate in asymmetric neuroblast divisions. Development 133: 2747-2756.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

CHROMOSOMAL LOCATION

Genetic locus: MELK (human) mapping to 9p13.2.

PRODUCT

MELK (h): 293T Lysate represents a lysate of human MELK transfected 293T cells and is provided as 100 µg protein in 200 µl SDS-PAGE buffer.

APPLICATIONS

MELK (h): 293T Lysate is suitable as a Western Blotting positive control for human reactive MELK antibodies. Recommended use: 10-20 µl per lane.

Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com