MCM5 (h): 293 Lysate: sc-110497

The Power to Question

BACKGROUND

The mini-chromosome maintenance (MCM) family of proteins, including MCM2, MCM3, MCM4 (Cdc21), MCM5 (Cdc46), MCM6 (Mis5) and MCM7 (Cdc47), are regulators of DNA replication that act to ensure replication occurs only once in the cell cycle. Expression of MCM proteins increases during cell growth, peaking at G_1 to S phase. The MCM proteins each contain an ATP-binding motif, which is predicted to mediate ATP-dependent opening of double-stranded DNA. MCM proteins are regulated by E2F transcription factors, which induce MCM expression, and by protein kinases, which interact with MCM proteins to maintain the postreplicative state of the cell. MCM2/MCM4 complexes function as substrates for Cdc2/cyclin B *in vitro*. Cleavage of MCM3, which can be prevented by caspase inhibitors, results in the inactivation of the MCM complex (composed of at least MCM proteins 2-6) during apoptosis. A complex composed of MCM4, MCM6 and MCM7 has been shown to be involved in DNA helicase activity; and MCM5 is involved in IFN- γ -induced Stat1 α transcription activation.

REFERENCES

- Koonin, E.V. 1993. A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication. Nucleic Acids Res. 21: 2541-2547.
- 2. Ishimi, Y. 1997. A DNA helicase activity is associated with an MCM4, 6, and 7 protein complex. J. Biol. Chem. 272: 24508-24513.
- 3. Leone, G., et al. 1998. E2F3 activity is regulated during the cell cycle and is required for the induction of S phase. Genes Dev. 12: 2120-2130.
- Coverley, D., et al. 1998. Protein kinase inhibition in G₂ causes mammalian MCM proteins to reassociate with chromatin and restores ability to replicate. Exp. Cell Res. 238: 63-69.
- Fujita, M., et al. 1998. Cell cycle and chromatin binding state-dependent phosphorylation of human MCM heterohexameric complexes. A role for Cdc2 kinase. J. Biol. Chem. 273: 17095-17101.

CHROMOSOMAL LOCATION

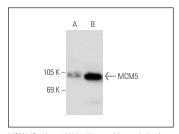
Genetic locus: MCM5 (human) mapping to 22q12.3.

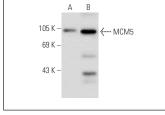
PRODUCT

MCM5 (h): 293 Lysate represents a lysate of human MCM5 transfected 293 cells and is provided as 100 µg protein in 200 µl SDS-PAGE buffer.

APPLICATIONS

MCM5 (h): 293 Lysate is suitable as a Western Blotting positive control for human reactive MCM5 antibodies. Recommended use: 10-20 µl per lane.


Control 293 Lysate: sc-110760 is available as a Western Blotting negative control lysate derived from non-transfected 293 cells.


MCM5 (E-10): sc-165994 is recommended as a positive control antibody for Western Blot analysis of enhanced human MCM5 expression in MCM5 transfected 293 cells (starting dilution 1:100, dilution range 1:100-1:1,000).

RECOMMENDED SUPPORT REAGENTS

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048.

DATA

MCM5 (E-10): sc-165994. Western blot analysis of MCM5 expression in non-transfected: sc-110760 (A) and human MCM5 transfected: sc-110497 (B) 293 whole cell lysates.

MCM5 (C-10): sc-165993. Western blot analysis of MCM5 expression in non-transfected: sc-110760 (**A**) and human MCM5 transfected: sc-110497 (**B**) 293 whole cell lysates.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com