G_{β 1} (h): 293 Lysate: sc-110894

The Power to Questio

BACKGROUND

Heterotrimeric G proteins function to relay information from cell surface receptors to intracellular effectors. Each of a very broad range of receptors specifically detects an extracellular stimulus (i.e. a photon, pheromone, odorant, hormone or neurotransmitter), while the effectors (e.g., adenyl cyclase), which act to generate one or more intracellular messengers, are less numerous. In mammals, G protein α , β and γ polypeptides are encoded by at least 16, 4 and 7 genes, respectively. Most interest in G proteins has been focused on their α subunits, since these proteins bind and hydrolyze GTP and most obviously regulate the activity of the best studied effectors. Evidence, however, has established an important regulatory role for the β and γ subunits. The G protein β subunits are important regulators of G protein α subunits as well as of certain signal transduction receptors and effectors. In mammals, there are five different members of the β subunit family.

REFERENCES

- Blatt, C., Eversole-Cire, P., Cohn, V.H., Zollman, S., Fournier, R.E., Mohandas, L.T., Nesbitt, M., Lugo, T., Jones, D.T. and Reed, R.R. 1988. Chromosomal localization of genes encoding guanine nucleotide-binding protein subunits in mouse and human. Proc. Natl. Acad. Sci. USA 85: 7642-7646.
- 2. Gautam, N., Northup, J., Tamir, H. and Simon, M.I. 1990. G protein diversity is increased by associations with a variety of γ subunits. Proc. Natl. Acad. Sci. USA 87: 7973-7977.
- Simon, M.I., Strathmannm, M.P. and Gautam, N. 1991. Diversity of G proteins in signal transduction. Science 252: 802-808.
- von Weizsäcker, E., Strathmann, M.P. and Simon, M.I. 1992. Diversity among the β-subunits of hetero-trimeric GTP-binding proteins: characterization of a novel β-subunit cDNA. Biochem. Biophys. Res. Commun. 183: 350-356.
- Kleuss, C., Scherübl, H., Hescheler, J., Schultz, G. and Wittig, B. 1992.
 Different β-subunits determine G protein interaction with transmembrane receptors. Nature 358: 424-426.
- Blank, J.L., Brattain, K.A. and Exton, J.H. 1992. Activation of cytosolic phosphoinositide phospholipase C by G protein βγ subunits. J. Biol. Chem. 267: 23069-23075.
- Hurowitz, E.H., Melnyk, J.M., Chen, Y.J., Kouros-Mehr, H., Simon, M.I. and Shizuya, H. 2000. Genomic characterization of the human hetero-trimeric G protein α, β and γ subunit genes. DNA Res. 7: 111-120.

CHROMOSOMAL LOCATION

Genetic locus: GNB1 (human) mapping to 1p36.33.

PRODUCT

 $G_{\beta,1}$ (h): 293 Lysate represents a lysate of human $G_{\beta,1}$ transfected 293 cells and is provided as 100 μg protein in 200 μl SDS-PAGE buffer.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

APPLICATIONS

 $G_{\beta,1}$ (h): 293 Lysate is suitable as a Western Blotting positive control for human reactive $G_{\beta,1}$ antibodies. Recommended use: 10-20 μl per lane.

Control 293 Lysate: sc-110760 is available as a Western Blotting negative control lysate derived from non-transfected 293 cells.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com