# V-ATPase G1 (m): 293 Lysate: sc-111266



The Power to Question

### **BACKGROUND**

Vacuolar-type H+-ATPase (V-ATPase) is a multisubunit enzyme responsible for acidification of eukaryotic intracellular organelles. V-ATPases pump protons against an electrochemical gradient, while F-ATPases reverse the process, thereby synthesizing ATP. A peripheral  $V_1$  domain, which is responsible for ATP hydrolysis, and an integral  $V_0$  domain, which is responsible for proton translocation, compose V-ATPase. Nine subunits (A-H) make up the  $V_1$  domain and five subunits (a, d, c, c' and c'') make up the  $V_0$  domain. Like F-ATPase, V-ATPase most likely operates through a rotary mechanism. In yeast, the V-ATPase G subunit is a soluble subunit that shares homology with the F-ATPase G subunit and may be part of a connection stalk between  $V_1$  and  $V_0$ . The  $G_2$  isoform of the G subunit associates with the pore-forming  $\alpha 1\text{C}$ -subunit of L-type calcium channel and aids in proper membrane targeting of the calcium channel. The genes encoding the  $G_1$  and  $G_2$  V-ATPase subunits map to chromosomes 9q32 and 6p21.33, respectively.

### **REFERENCES**

- 1. Hunt, I.E. and Bowman, B.J. 1997. The intriguing evolution of the "B" and "G" subunits in F-type and V-type ATPases: isolation of the Vma-10 gene from *Neurospora crassa*. J. Bioenerg. Biomembr. 29: 533-540.
- Neville, M.J. and Campbell, R.D. 1999. A new member of the Ig superfamily and a V-ATPase G subunit are among the predicted products of novel genes close to the TNF locus in the human MHC. J. Immun. 162: 4745-4754.
- Gao, T. and Hosey, M.M. 2000. Association of L-type calcium channels with a vacuolar H+-ATPase G2 subunit. Biochem. Biophys. Res. Commun. 277: 611-616.
- Charsky, C.M., Schumann, N.J. and Kane, P.M. 2000. Mutational analysis of subunit G (Vma10p) of the yeast vacuolar H+-ATPase. J. Biol. Chem. 275: 37232-37239.
- 5. Nishi, T. and Forgac, M. 2002. The vacuolar H+-ATPases—nature's most versatile proton pumps. Nat. Rev. Mol. Cell Biol. 3: 94-103.
- 6. Smith, A.N., Borthwick, K.J. and Karet, F.E. 2002. Molecular cloning and characterization of novel tissue-specific isoforms of the human vacuolar H+-ATPase C, G and d subunits, and their evaluation in autosomal recessive distal renal tubular acidosis. Gene 297: 169-177.
- 7. Jones, R.P., Durose, L.J., Findlay, J.B. and Harrison, M.A. 2005. Defined sites of interaction between subunits E (Vma4p), C (Vma5p), and G (Vma10p) within the stator structure of the vacuolar H+-ATPase. Biochemistry 44: 3933-3941.
- 8. Hanitzsch, M., Schnitzer, D., Seidel, T., Golldack, D. and Dietz, K.J. 2007. Transcript level regulation of the vacuolar H+-ATPase subunit isoforms VHA-a, VHA-E and VHA-G in *Arabidopsis thaliana*. Mol. Membr. Biol. 24: 507-518.

### **CHROMOSOMAL LOCATION**

Genetic locus: Atp6v1g1 (mouse) mapping to 4 C1.

### **RESEARCH USE**

For research use only, not for use in diagnostic procedures.

### **PRODUCT**

V-ATPase G1 (m): 293 Lysate represents a lysate of mouse V-ATPase G1 transfected 293 cells and is provided as 100  $\mu$ g protein in 200  $\mu$ l SDS-PAGE huffer

### **APPLICATIONS**

V-ATPase G1 (m): 293 Lysate is suitable as a Western Blotting positive control for mouse reactive V-ATPase G1 antibodies. Recommended use:  $10\text{-}20~\mu\text{l}$  per lane.

Control 293 Lysate: sc-110760 is available as a Western Blotting negative control lysate derived from non-transfected 293 cells.

# **STORAGE**

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

# **PROTOCOLS**

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com