# Rad23B (h): 293 Lysate: sc-111361



The Power to Question

# **BACKGROUND**

Mammalian cells express two Rad23 (genome repair protein) homologs, Rad23A (also designated HR23A) and Rad23B (also designated HR23B). In typical cells, mouse Rad23B is approximately ten times more abundant than mouse Rad23A. Endogenous XPC (xeroderma pigmentosum C protein) located in wildtype mouse embryonic fibroblasts is relatively stable; its steady-state level and stability appear to be significantly reduced by a targeted interruption of the mouse Rad23B gene, but not by that of mouse Rad23A. Loss of both mouse Rad23 genes causes a strong further reduction of the XPC protein level. RAD23, the gene encoding for the Rad23 protein, is crucial for excision-repair of UV-damaged DNA. RAD23 resembles the other DNA repair genes, RAD2, RAD6, RAD7, RAD18 and RAD54, all of which also exhibit increased transcription in response to DNA damage and during meiosis. Rad23 is a nuclear protein containing a ubiquitin-like domain required for biological functions. It is a highly conserved protein involved in nucleotide excision repair (NER) that associates with the proteasome via its N-terminus. Its C-terminal ubiquitinassociated domain is evolutionarily conserved from yeast to humans. Rad23 may also act as a regulator for the activity of the 26S proteasome.

# **REFERENCES**

- Elder, R.T., et al. 2002. Involvement of rhp23, a Schizosaccharomyces pombe homolog of the human hHR23A and Saccharomyces cerevisiae Rad23 nucleotide excision repair genes, in cell cycle control and protein ubiquitination. Nucleic Acids Res. 30: 581-591.
- Ng, J.M., et al. 2003. A novel regulation mechanism of DNA repair by damage-induced and Rad23-dependent stabilization of xeroderma pigmentosum group C protein. Genes Dev. 17: 1630-1645.
- 3. Wang, Q., et al. 2003. Ubiquitin recognition by the DNA repair protein hHR23A. Biochemistry 42: 13529-13535.
- Kamionka, M. and Feigon, J. 2004. Structure of the XPC binding domain of hHR23A reveals hydrophobic patches for protein interaction. Protein Sci. 13: 2370-2377.
- Okuda, Y., et al. 2004. Relative levels of the two mammalian Rad23 homologs determine composition and stability of the xeroderma pigmentosum group C protein complex. DNA Repair 3: 1285-1295.
- Hsieh, H.C., et al. 2005. hHR23A, a human homolog of Saccharomyces cerevisiae Rad23, regulates xeroderma pigmentosum C protein and is required for nucleotide excision repair. Biochem. Biophys. Res. Commun. 335: 181-187.
- Kim, B., et al. 2005. Solution structure and backbone dynamics of the XPC-binding domain of the human DNA repair protein hHR23B. FEBS J. 272: 2467-2476.
- Heessen, S., et al. 2005. The UBA2 domain functions as an intrinsic stabilization signal that protects Rad23 from proteasomal degradation. Mol. Cell 18: 225-235.
- 9. Chen, L. and Madura, K. 2006. Evidence for distinct functions for human DNA repair factors hHR23A and hHR23B. FEBS Lett. 580: 3401-3408.

#### **CHROMOSOMAL LOCATION**

Genetic locus: RAD23B (human) mapping to 9q31.2.

#### **PRODUCT**

Rad23B (h): 293 Lysate represents a lysate of human Rad23B transfected 293 cells and is provided as 100 µg protein in 200 µl SDS-PAGE buffer.

#### **APPLICATIONS**

Rad23B (h): 293 Lysate is suitable as a Western Blotting positive control for human reactive Rad23B antibodies. Recommended use: 10-20 µl per lane.

Control 293 Lysate: sc-110760 is available as a Western Blotting negative control lysate derived from non-transfected 293 cells.

# **STORAGE**

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

# **RESEARCH USE**

For research use only, not for use in diagnostic procedures.

#### **PROTOCOLS**

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com