KIF3C (h): 293T Lysate: sc-111597

The Power to Question

BACKGROUND

The kinesins constitute a large family of microtubule-dependent motor proteins, which are responsible for the distribution of numerous organelles, vesicles and macromolecular complexes throughout the cell. Individual kinesin members play crucial roles in cell division, intracellular transport and membrane trafficking events including endocytosis and transcytosis. Members of the heterotrimeric kinesin II family of microtubule associated motors generally contain two different motor subunits from the KIF3 family, which includes KIF3A, B and C. KIF3 isoforms mediate anterograde transport of membrane bound organelles in neurons and melanosomes, transport between the endoplasmic reticulum and the Golgi, and transport of protein complexes within cilia and flagella required for their morphogenesis. The human KIF3C gene maps to chromosome 2p23 and encodes a 793 amino acid protein that is highly expressed in neural tissues such as brain, spinal cord and retina. The selective expression of KIF3C protein in the nervous system during embryonic development and its upregulation during neuroblastoma differentiation suggests a role for this motor during maturation of neuronal cells.

REFERENCES

- Hamm-Alvarez, S.F. 1998. Molecular motors and their role in membrane traffic. Adv. Drug Deliv. Rev. 29: 229-242.
- 2. Yang, Z. and Goldstein, L.S. 1998. Characterization of the KIF3C neural kinesin-like motor from mouse. Mol. Biol. Cell 9: 249-261.
- Telford, E.A., et al. 1998. cDNA cloning, genomic organization, and chromosomal localization of a novel human gene that encodes a kinesin-related protein highly similar to mouse Kif3C. Biochem. Biophys. Res. Commun. 242: 407-412.
- 4. Cole, D.G. 1999. Kinesin-II, the heteromeric kinesin. Cell. Mol. Life Sci. 56: 217-226.
- 5. Hirokawa, N. 2000. Stirring up development with the heterotrimeric kinesin KIF3. Traffic 1: 29-34.
- 6. Navone, F., et al. 2001. Expression of KIF3C kinesin during neural development and *in vitro* neuronal differentiation. J. Neurochem. 77: 741-753.
- 7. Yang, Z., et al. 2001. Molecular cloning and functional analysis of mouse C-terminal kinesin motor KIFC3. Mol. Cell. Biol. 21: 75-70.
- Yang, Z., et al. 2001. Functional analysis of mouse kinesin motor KIF3C. Mol. Cell. Biol. 21: 5306-5311.
- 9. Online Mendelian Inheritance in Man, OMIM™. 2001. Johns Hopkins University, Baltimore, MD. MIM Number: 603060. World Wide Web URL: http://www.ncbi.nlm.nih.gov/omim/

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

CHROMOSOMAL LOCATION

Genetic locus: KIF3C (human) mapping to 2p23.

PRODUCT

KIF3C (h): 293T Lysate represents a lysate of human KIF3C transfected 293T cells and is provided as 100 µg protein in 200 µl SDS-PAGE buffer.

APPLICATIONS

KIF3C (h): 293T Lysate is suitable as a Western Blotting positive control for human reactive KIF3C antibodies. Recommended use: 10-20 μ l per lane.

Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com