# HTF9C (h): 293T Lysate: sc-111679



The Power to Question

## **BACKGROUND**

HTF9C (hpall tiny fragments locus 9c protein) is also known as TRMT2A (tRNA (uracil-5-)-methyltransferase homolog A) and is a 625 amino acid protein that is expressed as two isoforms. In mice, HTF9C is transcribed by a bidirectional promoter along with Ran BP-1 and the transcription of both genes is regulated during the cell cycle. During the S phase, the genes of HTF9C and Ran BP-1 are quickly transcribed into mRNA which is produced the most during this phase and mRNA production decreases during mitosis. The bidirectional promoter is down-regulated in growth-arrested cells and is activated during the  $\rm G_1/S$  transition. This co-regulation of the HTF9C and Ran BP-1 genes is an evolutionarily conserved trait present in many species that possess two proteins that may have related functions. The genes of both HTF9C and Ran BP-1 are expressed in human cells and are highly conserved among species. The human HTF9C gene is thought to be associated with a deficit in sustained attention observed among patients with schizophrenia.

# **REFERENCES**

- Bressan, A., Somma, M.P., Lewis, J., Santolamazza, C., Copeland, N.G., Gilbert, D.J., Jenkins, N.A. and Lavia, P. 1991. Characterization of the opposite-strand genes from the mouse bidirectionally transcribed HTF9 locus. Gene 103: 201-209.
- Guarguaglini, G., Battistoni, A., Pittoggi, C., Di Matteo, G., Di Fiore, B. and Lavia, P. 1997. Expression of the murine RanBP1 and HTF9C genes is regulated from a shared bidirectional promoter during cell cycle progression. Biochem. J. 325: 277-286.
- Puech, A., Saint-Jore, B., Funke, B., Gilbert, D.J., Sirotkin, H., Copeland, N.G., Jenkins, N.A., Kucherlapati, R., Morrow, B. and Skoultchi, A.I. 1997.
  Comparative mapping of the human 22q11 chromosomal region and the orthologous region in mice reveals complex changes in gene organization. Proc. Natl. Acad. Sci. USA 94: 14608-14613.
- 4. Di Matteo, G., Salerno, M., Guarguaglini, G., Di Fiore, B., Palitti, F. and Lavia, P. 1998. Interactions with single-stranded and double-stranded DNA-binding factors and alternative promoter conformation upon transcriptional activation of the Htf9-a/RanBP1 and HTF9C genes. J. Biol. Chem. 273: 495-505.
- Liu, Y.L., Fann, C.S., Liu, C.M., Chang, C.C., Yang, W.C., Wu, J.Y., Hung, S.I., Chan, H.Y., Chen, J.J., Hsieh, M.H., Hwang, T.J., Faraone, S.V., Tsuang, M.T., Chen, W.J. and Hwu, H.G. 2007. HTF9C gene of 22q11.21 region associates with schizophrenia having deficit-sustained attention. Psychiatr. Genet. 17: 333-338.
- Online Mendelian Inheritance in Man, OMIM™. 2007. Johns Hopkins University, Baltimore, MD. MIM Number: 611151. World Wide Web URL: http://www.ncbi.nlm.nih.gov/omim/

## CHROMOSOMAL LOCATION

Genetic locus: TRMT2A (human) mapping to 22q11.21.

# **PRODUCT**

HTF9C (h): 293T Lysate represents a lysate of human HTF9C transfected 293T cells and is provided as 100  $\mu g$  protein in 200  $\mu l$  SDS-PAGE buffer.

#### **APPLICATIONS**

HTF9C (h): 293T Lysate is suitable as a Western Blotting positive control for human reactive HTF9C antibodies. Recommended use: 10-20  $\mu$ l per lane.

Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

### **STORAGE**

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

### **RESEARCH USE**

For research use only, not for use in diagnostic procedures.

## **PROTOCOLS**

See our web site at www.scbt.com for detailed protocols and support products.

**Santa Cruz Biotechnology, Inc.** 1.800.457.3801 831.457.3800 fax 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**