SLUG (h): 293T Lysate: sc-111858

The Power to Question

BACKGROUND

The SNAIL family of developmental regulatory proteins is a group of widely conserved zinc-finger proteins that regulate transcription and include the mammalian proteins SLUG, SNAI 1 (the human homolog of *Drosophila* SNAIL) and Smuc. SNAI 1 and SLUG are expressed in placenta and in adult heart, liver, and skeletal muscle. SNAI 1, and the corresponding mouse homolog Sna, each contain three classic zinc fingers and one atypical zinc finger, while SLUG contains five zinc finger regions and a transcriptional repression domain at the amino terminus, which enables SLUG to act as a negative regulator of gene expression. SLUG is implicated in the generation and migration of neural crest cells in human embryos and also contributes to limb bud development. In addition, SLUG also constitutes a cellular anti-apoptotic transcription factor that effectively prevents apoptosis in murine pro-B cells deprived of IL-3. The SNAIL-related gene from murine skeletal muscle cells, Smuc, is highly expressed in skeletal muscle and thymus and can, likewise, repress gene transcription. Smuc preferentially associates with CAGGTG and CACCTG E-box motifs (CANNTG) on DNA and involves the five putative DNA-binding zinc finger domains at the C-terminal region of Smuc.

REFERENCES

- Nieto, M.A., et al. 1992. Cloning and developmental expression of Sna, a murine homologue of the *Drosophila* SNAIL gene. Development 116: 227-237.
- Cohen, M.E., et al. 1998. Human SLUG gene organization, expression, and chromosome map location on 8q. Genomics 51: 468-471.
- Jiang, R., et al. 1998. Genomic organization, expression and chromosomal localization of the mouse Slug (Slugh) gene. Biochim. Biophys. Acta 1443: 251-254.
- Paznekas, W.A., et al. 1999. Genomic organization, expression, and chromosome location of the human SNAIL gene (SNAI1) and a related processed pseudogene (SNAI1P). Genomics 62: 42-49.
- Twigg, S.R., et al. 1999. Characterisation of the human snail (SNAI1) gene and exclusion as a major disease gene in craniosynostosis. Hum. Genet. 105: 320-326.
- Inukai, T., et al. 1999. SLUG, a ces-1-related zinc finger transcription factor gene with antiapoptotic activity, is a downstream target of the E2A-HLF oncoprotein. Mol. Cell 4: 343-352.
- Stegmann, K., et al. 1999. Human transcription factor SLUG: mutation analysis in patients with neural tube defects and identification of a missense mutation (D119E) in the Slug subfamily-defining region. Mutat. Res. 406: 63-69.
- 8. Kataoka, H., et al. 2000. A novel snail-related transcription factor Smuc regulates basic helix-loop-helix transcription factor activities via specific E-box motifs. Nucleic Acids Res. 28: 626-633.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

CHROMOSOMAL LOCATION

Genetic locus: SNAI2 (human) mapping to 8q11.21.

PRODUCT

SLUG (h): 293T Lysate represents a lysate of human SLUG transfected 293T cells and is provided as 100 µg protein in 200 µl SDS-PAGE buffer.

APPLICATIONS

SLUG (h): 293T Lysate is suitable as a Western Blotting positive control for human reactive SLUG antibodies. Recommended use: $10-20~\mu$ l per lane.

Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com