Histone H3.3B (h2): 293T Lysate: sc-112017

The Power to Question

BACKGROUND

Eukaryotic histones are basic and water soluble nuclear proteins that form hetero-octameric nucleosome particles by wrapping 146 base pairs of DNA in a left-handed super-helical turn sequentially to form chromosomal fibers. Two molecules of each of the four core histones (H2A, H2B, H3 and H4) form the octamer, which is comprised of two H2A-H2B dimers and two H3-H4 dimers, forming two nearly symmetrical halves by tertiary structure. Histones are subject to posttranslational modification by enzymes primarily on their N-terminal tails, but also in their globular domains. Such modifications include methylation, citrullination, acetylation, phosphorylation, sumoylation, ubiquitination and ADP-ribosylation. Histone H3.3 is a replacement histone subtype that is encoded by two genes, H3.3A and H3.3B, that are expressed independently from the cell cycle. The gene encoding H3.3B is localized to human chromosome 17, which is in contrast to the majority of the replication-dependent histone genes that are localized to clusters on human chromosome 6 and human chromosome 1.

REFERENCES

- Albig, W., Bramlage, B., Gruber, K., Klobeck, H.G., Kunz, J. and Doenecke, D. 1995. The human replacement Histone H3.3B gene (H3F3B). Genomics 30: 264-272.
- 2. Bramlage, B., Kosciessa, U. and Doenecke, D. 1997. Differential expression of the murine Histone genes H3.3A and H3.3B. Differentiation 62: 13-20.
- Witt, O., Albig, W. and Doenecke, D. 1997. Transcriptional regulation of the human replacement Histone gene H3.3B. FEBS Lett. 408: 255-260.
- 4. Witt, O., Albig, W. and Doenecke, D. 1998. cAMP/phorbol ester response element is involved in transcriptional regulation of the human replacement Histone gene H3.3B. Biochem. J. 329: 609-613.
- 5. Online Mendelian Inheritance in Man, OMIM™. 1998. Johns Hopkins University, Baltimore, MD. MIM Number: 601058. World Wide Web URL: http://www.ncbi.nlm.nih.gov/omim/
- Schurter, B.T., Koh, S.S., Chen, D., Bunick, G.J., Harp, J.M., Hanson, B.L., Henschen-Edman, A., Mackay, D.R., Stallcup, M.R. and Aswad, D.W. 2001. Methylation of Histone H3 by coactivator-associated arginine methyltransferase 1. Biochemistry 40: 5747-5756.
- Frank, D., Doenecke, D. and Albig, W. 2003. Differential expression of human replacement and cell cycle dependent H3 Histone genes. Gene 312: 135-143.
- 8. Fischle, W., Tseng, B.S., Dormann, H.L., Ueberheide, B.M., Garcia, B.A., Shabanowitz, J., Hunt, D.F., Funabiki, H. and Allis, C.D. 2005. Regulation of HP1-chromatin binding by Histone H3 methylation and phosphorylation. Nature 438: 1116-1122.
- 9. Bode, A.M. and Dong, Z. 2005. Inducible covalent posttranslational modification of Histone H3. Sci. STKE 2005: re4.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

CHROMOSOMAL LOCATION

Genetic locus: H3F3B (human) mapping to 17q25.1.

PRODUCT

Histone H3.3B (h2): 293T Lysate represents a lysate of human Histone H3.3B transfected 293T cells and is provided as 100 μ g protein in 200 μ l SDS-PAGE buffer.

APPLICATIONS

Histone H3.3B (h2): 293T Lysate is suitable as a Western Blotting positive control for human reactive Histone H3.3B antibodies. Recommended use: $10-20 \mu l$ per lane.

Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com