PDK3 (h): 293 Lysate: sc-112250

The Power to Question

BACKGROUND

Pyruvate dehydrogenase kinase family members (PDK1, 2, 3 and 4) are serine kinases that catalyze phosphorylation of the E1 α subunit of the pyruvate dehydrogenase complex (PDC). PDC activity is controlled through phosphorylation and dephosphorylation of the E1 α subunit, which leads to inactivation and reactivation, respectively. PDK3 binding to a free lipoyl domain (L2) in dihydrolypoyl acetyltransferase (E2), which comprises the core of PDC, leads to a large increase in E1 α phosphorylation. Upregulation of PDK isoenzymes occurs during starvation conditions, where acetyl-CoA is alternatively generated through fatty acid oxidation. PDKs contain five conserved regions and are mechanistically similar to bacterial His-kinases in that both require histidine residues for activity. In mammals, transcripts for PDK3 are most abundant in testis and moderately expressed in heart and skeletal muscle.

REFERENCES

- Gudi, R., Bowker-Kinley, M.M., Kedishvili, N.Y., Zhao, Y. and Popov, K.M. 1995. Diversity of the pyruvate dehydrogenase kinase gene family in humans. J. Biol. Chem. 270: 28989-28994. Erratum in 1996 J. Biol. Chem. 271: 1250.
- Bowker-Kinley, M.M., Davis, W.I., Wu, P., Harris, R.A. and Popov, K.M. 1998.
 Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem. J. 329: 191-196.
- Sugden, M.C., Lall, H.S., Harris, R.A. and Holness, M.J. 2000. Selective modification of the pyruvate dehydrogenase kinase isoform profile in skeletal muscle in hyperthyroidism: implications for the regulatory impact of glucose on fatty acid oxidation. J. Endocrinol. 167: 339-345.
- Mooney, B.P., David, N.R., Thelen, J.J., Miernyk, J.A. and Randall, D.D. 2000. Histidine modifying agents abolish pyruvate dehydrogenase kinase activity. Biochem. Biophys. Res. Commun. 267: 500-503.
- Baker, J.C., Yan, X., Peng, T., Kasten, S. and Roche, T.E. 2000. Marked differences between two isoforms of human pyruvate dehydrogenase kinase. J. Biol. Chem. 275: 15773-15781.
- 6. Wu, P., Blair, P.V., Sato, J., Jaskiewicz, J., Popov, K.M. and Harris, R.A. 2000. Starvation increases the amount of pyruvate dehydrogenase kinase in several mammalian tissues. Arch. Biochem. Biophys. 381: 1-7.

CHROMOSOMAL LOCATION

Genetic locus: PDK3 (human) mapping to Xp22.11.

PRODUCT

PDK3 (h): 293 Lysate represents a lysate of human PDK3 transfected 293 cells and is provided as 100 µg protein in 200 µl SDS-PAGE buffer.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

APPLICATIONS

PDK3 (h): 293 Lysate is suitable as a Western Blotting positive control for human reactive PDK3 antibodies. Recommended use: 10-20 µl per lane.

Control 293 Lysate: sc-110760 is available as a Western Blotting negative control lysate derived from non-transfected 293 cells.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com