PLZF (h2): 293T Lysate: sc-114505

The Power to Question

BACKGROUND

Hypermethylated in cancer (HIC-1) was originally identified as a target of p53induced gene expression. HIC-1 is deleted in the genetic disorder Miller-Dieker syndrome (MDS). The expression of HIC-1 is also frequently suppressed in leukemia and other various cancers due to the hypermethylation of specific DNA regions and the resulting transcriptional silencing. These and other studies indicate that HIC-1 acts as a putative tumor suppressor protein that mediates transcriptional repression. HIC-1 is ubiquitously expressed in adult tissues and its structure is defined by five zinc fingers and an N-terminal broad-complex POZ (or BTB) domain. The BTB/POZ domain mediates homomeric and heteromeric POZ-POZ interactions and is common to transcriptional regulators involved in chromatin modeling. In several BTB/POZ containing proteins, including BCL-6 and the promyelocytic leukemia zinc finger (PLZF) oncoprotein, this domain interacts with the SMRT/N-CoR-mSin3A HDAC complex and is directly involved in repressing and silencing gene transcription. When this domain is deleted, as with the oncogenic PLZF-RAR chimera of promyelocytic leukemias, this transcriptional repression is attenuated. Conversely, HIC-1 does not interact with components of the HDAC complex, suggesting that HIC-1induced transcriptional repression is unassociated with the POZ/BTB domain.

REFERENCES

- Wales, M.M., et al. 1995. p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. Nat. Med. 1: 570-577.
- Ahmad, K.F., et al. 1998. Crystal structure of the BTB domain from PLZF. Proc. Natl. Acad. Sci. USA 95: 12123-12128.
- David, G., et al. 1998. Histone deacetylase associated with mSin3A mediates repression by the acute promyelocytic leukemia-associated PLZF protein. Oncogene 16: 2549-2556.
- Huynh, K.D., et al. 1998. The Bcl-6 POZ domain and other POZ domains interact with the corepressors N-CoR and SMRT. Oncogene 17: 2473-2484.
- 5. Wong, C.W., et al. 1998. Components of the SMRT corepressor complex exhibit distinctive interactions with the POZ domain oncoproteins PLZF, PLZF-RAR α , and Bcl-6. J. Biol. Chem. 273: 27695-27702.
- Guerardel, C., et al. 1999. Evolutionary divergence in the broad complex, tramtrack and bric-a-brac/pox viruses and zinc finger domain from the candidate tumor suppressor gene hypermethylated in cancer. FEBS Lett. 451: 253-256.
- Deltour, S., et al. 1999. Recruitment of SMRT/N-CoR-mSin3A-HDAC-repressing complexes is not a general mechanism for BTB/POZ transcriptional repressors: the case of HIC-1 and γFBP-B. Proc. Natl. Acad. Sci. USA 96: 14831-14836.
- 8. Denne, M., et al. 2007. Physical and functional interactions of human endogenous retrovirus proteins NP9 and Rec with the promyelocytic leukemia zinc finger protein. J. Virol. 81: 5607-5616.
- 9. Rho, S.B., et al. 2007. TIMP-1 regulates cell proliferation by interacting with the ninth zinc finger domain of PLZF. J. Cell. Biochem. 101: 57-67.

CHROMOSOMAL LOCATION

Genetic locus: ZBTB16 (human) mapping to 11q23.2.

PRODUCT

PLZF (h2): 293T Lysate represents a lysate of human PLZF transfected 293T cells and is provided as 100 µg protein in 200 µl SDS-PAGE buffer.

APPLICATIONS

PLZF (h2): 293T Lysate is suitable as a Western Blotting positive control for human reactive PLZF antibodies. Recommended use: 10-20 µl per lane.

Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com