GPR161 (h): 293T Lysate: sc-114770

The Power to Question

BACKGROUND

G protein-coupled receptors (GPRs), also known as seven transmembrane receptors, heptahelical receptors or 7TM receptors, comprise a superfamily of proteins that play a role in many different stimulus-response pathways. G protein-coupled receptors translate extracellular signals into intracellular signals (G protein-activation) and they respond to a variety of signaling molecules, such as hormones and neurotransmitters. GPR161 (G protein-coupled receptor 161), also known as RE2, is a 529 amino acid protein that belongs to the G protein-coupled receptor family. Localized to the cell membrane, GPR161 is a multi-pass membrane protein that functions as an orphan receptor, relaying extracellular signals to the intracellular environment. Two isoforms of GPR161 exist due to alternative splicing events.

REFERENCES

- Ji, T.H., et al. 1998. G protein-coupled receptors. I. Diversity of receptorligand interactions. J. Biol. Chem. 273: 17299-17302.
- Raming, K., et al. 1998. Identification of a novel G protein-coupled receptor expressed in distinct brain regions and a defined olfactory zone. Receptors Channels 6: 141-151.
- Schöneberg, T., et al. 1999. Structural basis of G protein-coupled receptor function. Mol. Cell. Endocrinol. 151: 181-193.
- 4. Schwalbe, H. and Wess, G. 2002. Dissecting G-protein-coupled receptors: structure, function, and ligand interaction. Chembiochem 3: 915-919.
- Small, K.M., et al. 2002. False positive non-synonymous polymorphisms of G-protein coupled receptor genes. FEBS Lett. 516: 253-256.
- Schöneberg, T., et al. 2002. The structural basis of G protein-coupled receptor function and dysfunction in human diseases. Rev. Physiol. Biochem. Pharmacol. 144: 143-227.
- 7. Bates, B., et al. 2006. Characterization of GPR101 expression and G-protein coupling selectivity. Brain Res. 1087: 1-14.
- Matteson, P.G., et al. 2008. The orphan G protein-coupled receptor, GPR161, encodes the vacuolated lens locus and controls neurulation and lens development. Proc. Natl. Acad. Sci. USA 105: 2088-2093.

CHROMOSOMAL LOCATION

Genetic locus: GPR161 (human) mapping to 1q24.2.

PRODUCT

GPR161 (h): 293T Lysate represents a lysate of human GPR161 transfected 293T cells and is provided as 100 µg protein in 200 µl SDS-PAGE buffer.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

APPLICATIONS

GPR161 (h): 293T Lysate is suitable as a Western Blotting positive control for human reactive GPR161 antibodies. Recommended use: 10-20 μl per lane.

Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

RESEARCH USE

For research use only, not for use in diagnostic procedures

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com